Electroweak Measurements

Cristinel DIACONU

Centre de Physique des Particules de Marseille

- Experimental framework (LEP,Tevatron,HERA)
- Precision tests
- Confrontation with lower energy data
- Weak boson production and properties
- Electroweak measurements in DIS at HERA
- Future
- Conclusions

Many thanks to:

Max Klein, Martin Grunewald, Pippa Wells, Dmitri Denisov, Jan Timmermans, Bolek Pietrzyk, Emmanuelle Perez, Matthew Wing, Richard Hawkings, David Waters, Chris Hays

<u>Colliders at Fermi Scale</u>

-> e+e- collider(2000) E_{cm}=90-209 GeV Lumi=900 pb-1/exp.(phys) ALEPH,DELPHI L3,OPAL

SLC: polarized e⁺e⁻ at Z peak

-> pp collider: CDF, D0

Run I E_{cm} =1.8 TeV 130 pb⁻¹/exp.(phys.)

Run II E_{cm} =1.96 TeV 1fb⁻¹ delivered 2009 -> 4-8 fb⁻¹

-> $e^{\pm}p$ collider $E_{cm} = 320 \text{ GeV}$ H1, ZEUS HERA I 120 pb-1/expt(phys.) HERA II 2007 -> 700 pb⁻1(delivered, $e^{\pm}, \pm P_{e}$)

Many other interesting results from lower energy facilities

LEP/SLC

The masters of the EW sector: Z pole, W-pairs, final refined analysis still improve

Tevatron

Unique e(27 GeV) p(920 GeV) collider, E_{cm}=320 GeV 2 collider experiments **H1 and ZEUS**, HERMES(fixed target) **HERA I** (1994-2000): for physics ~120 pb⁻¹/experiment **HERA II** (since 2003): polarized e-beam in collision L(HERA II): e[±]p (phys.): 100 pb⁻¹ e[±] polarization: 25-40% 2007: 700 pb⁻¹ delivered

Status of the SM

http://lepewwg.web.cern.ch/LEPEWWG/ last update June 2005

- Consistency check of the SM based on high precision measurements
- More than 1000 data points combined in 17 observables calculated in the SM from:
 - α_{em} (precision 3.10-9) the critical part $\Delta \alpha_{had}$ (from e+e-->hadrons)
 - G_F (precision 9.10⁻⁶) (->MW)
 - M_z (precision 2.10⁻⁵) from lineshape (LEP-1)
 - $\alpha_s(M_Z)$ (precision 2.10⁻²) hadronic observables
 - \mathbf{M}_{top} and \mathbf{M}_{Higgs}

• Zfitter 6.42, precision at 2 loop $(M_w, sin^2\theta_w)$ 3-loop for ρ

D.Bardin et al., Comput.Phys.Commun.133(229)2001

Improved precision in final results from LEP collaborations New input from low Q2 experiments very valuable

used in the EW fit (small change)

ullet

•

•

•

 $R_c^0 {=} \Gamma_{cc} {/} \Gamma_{had}$

New top mass measurement

Confrontation with low Q2

- APV Cs 0.4% (Q²=0 GeV²)
 - Q_w=-72.60±0.48 (PDG2004)
 - Q_wSM=-72.94±0.04
 - $Q_w^{Z,N} \simeq Z(1-4 \sin^2 \theta_w)-N$
- E158 (Q²=0.036 GeV²)
 - polarized e- e- scattering
 - measure A_{LR} deduce sin θ^{eff}
 - $\sin^2\theta_w^{\text{eff}}(Q=0.6)=0.2397\pm0.0013$
- NuTeV ($Q^2 = \sim 25 \text{GeV}^2$):CC/NC in v-N
 - $\sin^2\theta_w 3.0\sigma$ from the SM

• a_{μ:} BNL(μ[±]) @ 2.7σ

<u>Running of \alpha^{em} at low energy</u>

OPAL, CERN-PH-EP-2005-014

W pair production: the LEP harvest

W/Z boson production at Tevatron

Leptonic decay modes of W and Z (e,μ,τ)

4,000-14,000 Z's

40,000-120,000 W

σ(E) consistent with the theoretical prediction (NNLO) C.R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. **B359**, 343 (1991)

Large sample available for the study of W properties

W Mass and branching ratios

New published OPAL: $M_w = 80.415 \pm 0.052$ (preliminary error was 67 MeV)

Analysis in progress at Tevatron Run II: M_{w} Br(W $\rightarrow \tau$)

 $BR(W->qq)=67.48 \pm 0.28$

 $Br(W \rightarrow |v)$ [%]

W boson width

<u>e⁺e⁻ events at Tevatron</u>

Drell-Yan: qq->e⁺e⁻, measures γZ interference, $A_{FB} = f(M_{PB})$

sensitive to $sin^2 \theta_w^{eff}$, quark couplings and new physics

CDF $\sin^2 \theta_W^{eff} = 0.2238 \pm 0.0040(stat) \pm 0.0030(syst)$ (EW Fit: 0.2314) Rev. D 71, 052002 (2005)

Single boson production at LEP

Rare processes: Cross section<1 pb statistically limited, in agreement with the SM

Di-boson production at Tevatron

Single W production at HERA

- Events with isolated leptons and P_T^{miss}
- X section ~ 1 pb => O(10²) events/expt. at HERA I+II
- Events with large hadronic momentum observed by H1

```
PTX>25 GeV
```

•H1(update) (211 pb⁻¹) 17 / 6.4 \pm 1.1 (e,µ) HERA I and II data

•ZEUS(new analysis) (106 pb⁻¹) 1/ 1.5±0.2 (e only) previous search (130pb⁻¹,HERA I) 7/5.7 (e,µ) (W:45%)

No deviation observed by ZEUS with present lumi

More ∫*L* necessary

DIS at HERA

"p"/1000

Proton structure and EW effects from DIS

•
$$Q^2 = -(k - k')^2 = -q^2$$
 boson virtuality
• $x = \frac{Q^2}{2P \cdot q}$ quark p momentum
fraction
• $y = \frac{P \cdot q}{P \cdot k}$ inelasticity
Only 2 independent $Q^2 = sxy$

 $\underbrace{e(k) \quad \mathsf{NC}}_{p(P)} \underbrace{e(k')}_{\gamma, Z^{0}(q)} \underbrace{\gamma, Z^{0}(q)}_{X(P')}$

HERA Neutral Current at high x

$$\frac{d^2 \sigma_{\rm NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2(x, Q^2) \mp Y_- x \tilde{F}_3(x, Q^2) \right]_{10}^{10}$$

$$Y_{\pm} \equiv 1 \pm (1 - y)^2 \qquad \Phi_{\rm NC} \longrightarrow 10^{10}$$
[example of decomposition]

$$x\tilde{F}_{3} \equiv -a_{e} \frac{\kappa Q^{2}}{(Q^{2}+M_{Z}^{2})} xF_{3}^{\gamma Z} + (2v_{e}a_{e}) \left(\frac{\kappa Q^{2}}{Q^{2}+M_{Z}^{2}}\right)^{2} xF_{3}^{Z}$$
$$[xF_{3}^{\gamma Z}, xF_{3}^{Z}] = 2x \sum_{q} [e_{q}a_{q}, v_{q}a_{q}] \{q - \overline{q}\}$$

HERA experiments constrain parton distributions CC [pure weak process] => resolve quark flavours NC also sensitive to electroweak effects at high Q2

Combined EW-QCD fits

New approach (H1): common fit EW+QCD;

- use CC/NC HERA I data (>600 measurements)

On Mass Shell scheme

 $M_W = 80,709\pm0,205(\exp)_{-0,029}^{+0,048}(\text{mod})\pm0,025(\text{top})\pm0,033(\text{th})-0,084(\text{Higgs}) \text{ GeV}$ $\sin^2\theta_W = 1 - \frac{M_W^2}{M_W^2}$ $\sin^2\theta_W = 0.2151\pm0.0040_{\exp,-0.0011}|_{th}$ First determination in DIS @ EW scale EW fit : 0.2228\pm0.0003

Light quarks couplings to the Z

- b,c couplings very well known (few % LEP from A_{FB}(c,b))
- Light quarks (u,d) couplings determination
 - HERA: eq->eq Combined fit Z couplings + PDF
 - LEP : ee-->qq at Z peak (a²v², a²+v²)
 - TEVATRON: qq->ee from Drell-Yan (electrons) A_{FB}

HERA II results with polarized beams

HERA can run with e^{\pm} and both e-beam polarisations (P=0.25-0.4)

$$\sigma^{\mathbf{e}^{\pm}\mathbf{p}}(\mathbf{P}) = (\mathbf{1} \pm \mathbf{P})\sigma^{\mathbf{e}^{\pm}\mathbf{p}}_{\mathbf{P}=\mathbf{0}}$$

CC: linear dependence established in DIS at HERA

Compatible with V-A structure (no RH currents)

CHARM (1979): $v_{\mu} N \rightarrow \mu X$

It may be concluded that positive muons produced by interactions of high-energy antineutrinos with nuclei have a longitudinal polarization oriented along their momentum direction. Within the experimental errors the helicity is found to be +1, consistent with a purely V, A form of the interaction. An upper limit

The future of precision EW measurements at high energy

- LHC (E_{cm}=14TeV) large statistics:
 - generous cross sections W,Z,top
 - 2.10⁶ W's for 0.1 fb⁻¹
 - top, triple/quartic gauge couplings,...
- LC (GigaZ or E_{cm}=1 TeV) interplay:

	now	Tev. Run II	LHC	LC	GigaZ
$\delta \sin^2 heta_{ ext{eff}}(imes 10^5)$	17	78	14–20	(6)	1.3
δM_W [MeV]	34	27	15	10	7
δm_t [GeV]	5.1	2.7	1.0	0.2–0.1	0.1
$\delta m_h [{ m MeV}]$		1	200	50	50

proton - (anti)proton cross sections

hep-ph/0410364

Conclusions

- SM is in good shape
 - new physics is not (yet) on the SM territory
 - a few peculiarities 2.5-3 σ (A_{fb}(b), N_v, NuTeV, Br(W-> τ), a_u)
- LEP is finalizing results:
 - improving in precision amazing and worth the effort
- Tevatron is refining the analysis of Run II data
 - increase in the luminosity will improve the precision.
- HERA : a first coherent QCD+EW analysis of DIS data
 - increase luminosity, e[±]-beam polarization
- Precision measurement will continue soon at LHC and (latter) at the LC

Polarisation effects in NC-DIS

ZEUS

- NC(P_e) via parity violating couplings of the Z in the t-channel
- The effect is not yet established experimentally
- Improvement in L/P will improve the outcome for NC's
 - (q densities, couplings)

