Heavy Flavours in High Energy ep Collisions

WANG Meng
wangm@physik.uni-bonn.de

Physikalisches Institut der universität bonn

on behalf of the H1 and ZEUS collaborations

XXXV International Symposium on Multiparticle Dynamics
Kroměříž, Czech Republic
August 2005
1 Introduction

2 Charm production

3 Beauty production

4 Summary
1 Introduction

2 Charm production

3 Beauty production

4 Summary
Colliding experiments at HERA

<table>
<thead>
<tr>
<th></th>
<th>E_e</th>
<th>E_p</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-98</td>
<td>27.5 GeV</td>
<td>820 GeV</td>
<td>300 GeV</td>
</tr>
<tr>
<td>99-</td>
<td>27.5 GeV</td>
<td>920 GeV</td>
<td>318 GeV</td>
</tr>
</tbody>
</table>

$e^\pm \to p$

Q^2 exchanged boson virtuality

x proton’s fractional momentum carried by struck parton

0 $\xrightarrow{\text{photoproduction}(\gamma p)}$ $Q^2(\sim 1 \text{GeV}^2)$ $\xrightarrow{\text{deep inelastic scattering}(DIS)}$ ∞
Heavy flavours in QCD

Factorisation: Parton densities \otimes pQCD \otimes Fragmentation

\[e(k) \rightarrow e(k') \]

$\gamma^* (-Q^2)$

\[p(P) \rightarrow \phi_{q/p}(\xi P) \]

$\hat{\sigma}$: Partonic cross section

Hard scales: $m_{c,b}, p_T, Q^2$

$D_{H/h}$: fragmentation function of quark h to hadron H

z: fractional momentum of H relative to h

$\phi_{q/p}$: probability density of finding parton q in proton, carrying momentum ξP
1. Introduction

2. Charm production

3. Beauty production

4. Summary
Previous measurements of inclusive charm production have shown general agreement with NLO QCD predictions.

Recent measurements:
- Exclusive $charm + jet$ photoproduction to understand photon’s hadronic behaviour
- Charm production in DIS to constrain gluon density in the proton
- Charmed hadrons production to confirm charm fragmentation universality
$D^* + jet$ photoproduction

- $Q^2 < 1 \text{ GeV}^2$
- $130 < W < 280 \text{ GeV}$
- $p_T^{D^*} > 3 \text{ GeV}$
- $|\eta^{D^*}| < 1.5$
- $E_T^{jet} > 6 \text{ GeV}$
- $-1.5 < \eta^{jet} < 2.4$

- Consistent with NLO massive and massless calculations
- No excess in the forward direction
Dijet correlation

\[\Delta \phi_{jj} \rightarrow \text{sensitive to higher-order topologies} \]

ZEUS

\[\frac{d\sigma}{d\Delta \phi_{jj}}(e^+e^- \rightarrow e^+D^*+jj+X) \text{ (nb/rad.)} \]

- \(x_T^{obs}>0.75 \)
- \(x_T^{obs}<0.75 \)

Jet energy scale uncertainty

\[E_T^{jet_1} > 7 \text{ GeV} \quad E_T^{jet_2} > 6 \text{ GeV} \]

\[x_{\gamma}^{obs} = \sum_{i=1,2} \frac{E_T^{jet_i} e^{\eta^{jet_i}}}{2yE_e} \]

NEEDS:
higher-order calculations or additional parton showers in current NLO calculations!
Jet shape in charm + dijet photoproduction

Tag charm jet by muon and look at the other jet

\[\psi(r) \equiv \frac{p_T^{\text{jet}}(r' < r)}{p_T^{\text{jet}}(r' < R)} \]

\[\langle \psi(r) \rangle = \frac{\sum_{\text{jets}} \psi(r)}{N_{\text{jets}}} \]

PYTHIA:
- excitation \(\sim 35\% \)
- proton: CTEQ5L
- photon: GRV-LO

DATA: fewer gluon jets at low \(x_\gamma \)
Exploiting low Q^2 region

$\frac{d\sigma}{dQ^2}$ (nb/GeV2)

- ZEUS DIS BPC D* (prel.) 98-00
- ZEUS DIS D* 98-00
- HVQDIS, $M_c=1.35$ GeV, ZEUS NLO pdf fit

$0.05 < Q^2 < 0.7$ GeV2

$0.02 < y < 0.085$

$p_T^{D*} > 1.5$ GeV

$|\eta^{D*}| < 1.5$

NLO QCD: well over 4 orders of magnitude in Q^2
First charm result from HERA II

<table>
<thead>
<tr>
<th>Year</th>
<th>$L/(\text{pb}^{-1})$</th>
<th>e^-p</th>
<th>e^+p</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-00</td>
<td>17</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>03-05</td>
<td>33</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

$5 < Q^2 < 1000 \text{ GeV}^2$
$0.02 < y < 0.7$
$1.5 < p_T^{D^*} < 15 \text{ GeV}$
$|\eta^{D^*}| < 1.5$

\[\frac{\sigma(e^-p \rightarrow e^-D^*X)}{\sigma(e^+p \rightarrow e^+D^*X)} \]

excess in the previous measurement NOT confirmed
Probing gluon density in the proton

ZEUS

HERA, D* in DIS

\[\frac{d\sigma}{dp_T}(D^*) \text{ (nb/GeV)} \]

\[\frac{d\sigma}{d\eta}(D^*) \text{ (nb)} \]

- ZEUS 98-00
- HVQDIS \(m_c = 1.35 \text{ GeV} \)
- ZEUS NLO QCD fit
- HVQDIS \(m_c = 1.3 \text{ GeV} \)
- CTEQ5F3
- HVQDIS \(m_c = 1.35 \text{ GeV} \)
- ZEUS + AROMA

\[\frac{\sigma}{\sigma(\text{theory})} \]

- H1 (prel.) 99-00
- ZEUS 98-00
- HVQDIS \(m_c = 1.35 \text{ GeV} \)
- ZEUS NLO QCD fit
- HVQDIS \(m_c = 1.3 \text{ GeV} \)
- CTEQ5F3

\[p_T(D^*) \text{ (GeV)} \]

\[\eta(D^*) \]

WANG Meng

Heavy Flavours in High Energy ep Collisions
Precise measurements of $F_2^{c\bar{c}}$ at HERA
Charm fragmentation function

Spectra similar in shape despite different definitions
Charm fragmentation ratios and fractions

\[R_{u/d} = \frac{c\bar{u}}{c\bar{d}} \approx 1 \Rightarrow \text{isospin invariance} \]

\[\gamma_s = \frac{2c\bar{s}}{c\bar{d}+c\bar{u}} \approx \frac{1}{4} \Rightarrow s \text{ suppression} \]

\[P_V = \frac{V}{V+PS} \neq \frac{3}{4} \Rightarrow \text{NOT naïve spin counting} \]

Consistent with fragmentation universality

WANG Meng

Heavy Flavours in High Energy ep Collisions
1. Introduction

2. Charm production

3. Beauty production

4. Summary
$m_b > m_c$: pQCD calculations more reliable

But, suppression $\Rightarrow \sigma_{uds} : \sigma_c : \sigma_b \sim 2000 : 200 : 1$

Anyway, beauty “puzzle” seems to be over...
Beauty photoproduction: $\mu + dijet$

NLO: describing data well

H1: excess at low p_T^μ
Introduction Charm Beauty Summary

Production F_2^{bb} Latest

Beauty production in DIS: $\mu + \text{jet}$

- H1 and ZEUS: good agreement
- NLO: describing DATA well except at low p_T^μ and high η^μ

WANG Meng

Heavy Flavours in High Energy ep Collisions
Total beauty production

Excess confirmed by integrated cross section measurements

H1 D*µ
σ_{vis}(ep \rightarrow bb \rightarrow D*µX)
Q^2<1GeV^2, 0.05<y<0.75
p_µ>2GeV, p_(D*)>1.5GeV

ZEUS (prel.) D*µ
σ(ep \rightarrow b or bX)
Q^2<1GeV^2, rap.ζ<1, 0.05<y<0.85

ZEUS (prel.) D*µ
σ(ep \rightarrow b or bX)
Q^2>2GeV^2, rap.ζ<1, 0.05<y<0.7

ZEUS (prel.) µµ
σ_{tot}(ep \rightarrow bbX)

NLO (FNMR+HVQDIS): too small?
First measurement of $F_{2}^{b\bar{b}}$

Inclusive impact parameters (δ) of tracks

Two VFNS NLOs and one NNLO reasonably describing data
Heavy flavour contributions to ep cross section

Charm: increasing slightly with Q^2, roughly 24% on average

Beauty: increasing rapidly with Q^2, 0.4% at $Q^2 = 12\ GeV^2$
3% at $Q^2 > 150\ GeV^2$

NLO QCD predictions of MRST describing data reasonably well
... many new points — large excess of early measurements NOT confirmed,
although NLO calculation still consistently below data.
1. Introduction

2. Charm production

3. Beauty production

4. Summary
Some recent heavy flavour measurements at HERA were reviewed. NLO calculations are in general agreement with the data. There are still problematic regions at small Q^2 and p_T, and in the forward direction. Improved models needed!

Outlook — HERA II results!
- Higher luminosity
- Improved detector