Jets in Photoproduction & at low Q² at HERA

On behalf of the H1 and ZEUS Collaborations ISDM August 2005, Kromeriz Kamil Sedlak, University of Oxford

<u>Outline</u>

Photoproduction of dijets
 Transition between the photoproduction and DIS
 Tri-Jets: Color dynamics in photoproduction
 Conclusions

1

- Direct photon interactions (a) and (b): photon acts as a point-like object. It is there for any Q^2 .
- Resolved photon interactions (c), (d) and (e): photon emits quarks and gluons before the hard interaction. It is there (must be taken into account) in photoproduction ($Q^2 \sim 0$), can be included at low $Q^2 \sim 1 \text{ GeV}^2$, and dies out for large Q^2 . More precisely, resolved photon interactions should be taken into account for $Q^2 < (E_{T jets})^2$ ($E_{T jets} = \text{hard scale}$).
- Experimental distinction between direct and resolved phot. interactions:

-
$$x_{\gamma} = \sum_{jets1,2} (E_j^* - p_z^*) / \sum_{hadrons} (E^* - p_z^*)$$

ZEUS:

Data 96-97, Eur.Phys.J.C23,615 (2002) $E_{p} = 27.5 \text{ GeV}; E_{p} = 820 \text{ GeV}$ Int. lumi = 38.6 pb⁻¹ $Q^2 < 1 \text{ GeV}^2$ E_{T.iet1} > 14 GeV E_{T.iet2}> 11 GeV -1 < η _{iet1.2} < 2.4 134 < W_{vP} < 277 GeV Photon PDF ... GRV HO Proton PDF ... CTEQ5M1 NLO QCD ... Frixione et al.

H1:

Data 99-00, H1 preliminary

 $E_e = 27.5 \text{ GeV}; E_P = 920 \text{ GeV}$ Int. lumi = 66.6 pb⁻¹ $Q^2 < 1 \text{ GeV}^2$ $E_{T,jet1} > 25 \text{ GeV}$ $E_{T,jet2} > 15 \text{ GeV}$ $-0.5 < \eta_{jet1,2} < 2.75$ 0.1 < y < 0.9Photon PDF ... GRV HO Proton PDF ... CTEQ6M NLO QCD ... Frixione et al.

ZEUS

- Direct photon interactions:
 - Both H1 and ZEUS find good agreement of the NLO QCD predictions with the data.
- Resolved photon interactions:
 - Both H1 and ZEUS data well approximated by NLO at low $E_{\rm T}$ jets.
- HERA photoproduction dijet cross sections are suitable for constraining the proton and photon PDFs.

Dijet Cross Section as a Function of $|\cos \Theta^*|$

• $\cos \Theta^* \dots | \tanh(\eta^1 - \eta^2) / 2 |$

 Shapes consistent with expectations from dominant propagators:

- "gluon" ~ (1-|cos Θ*|) ²
 (resolved phot. interactions)
- "quark" ~ (1-|cos Θ*|) -1 (direct photon interactions)

 NLO QCD description quite good within the errors.


```
Data 96-97, Eur.Phys.J.C35,487 (2004)
E_{e} = 27.5 \text{ GeV}; E_{p} = 820 \text{ GeV}
Int. lumi = 38.6 pb<sup>-1</sup>
Q<sup>2</sup> < 2000 GeV<sup>2</sup>
E<sub>T.iet1</sub> > 7.5 GeV
E<sub>T.iet2</sub> > 6.5 GeV
-3 < η*<sub>iet1,2</sub> < 0
0.2 < y < 0.55
Photon PDF ... GRV & AFG
Proton PDF ... CTEQ5M
NLO QCD:
   Photoproduction: ... Frixione et al.
      - \mu^2 = (E_T)^2
   DIS: ... DISASTER++
      - \mu^2 = Q^2 + (E_T)^2 or \mu^2 = Q^2
```

```
Data 99-00, Eur.Phys.J.C37,141 (2004)
E_{p} = 27.5 \text{ GeV}; E_{p} = 920 \text{ GeV}
Int. lumi = 57 pb<sup>-1</sup>
2 < Q<sup>2</sup> < 80 GeV<sup>2</sup>
E<sub>T.jet1</sub> > 7 GeV
E<sub>T,jet2</sub> > 5 GeV
-2.5 < η* <sub>jet1,2</sub> < 0
0.1< y < 0.85
Photon PDF ... SAS1D (\gamma_T), Chyla (\gamma_L)
Proton PDF ... CTEQ5L / CTEQ6M
NLO QCD ... DISENT, JETVIP,
            NLOJET++
            \mu^{2}=(E_{T})^{2}
```

ZEUS

ZEUS Dijets: Q² dependence

- Photoproduction:
 - Data described well by NLO QCD (Frixione & Ridolfi)

• DIS:

- NLO QCD without resolved photon interactions (DISASTER++) describes data for x_{γ} > 0.75 only.
- NLO QCD is too low for $x_{\gamma} < 0.75$

Hard scale: $\mu^2 = Q^2 + (E_T)^2$

ZEUS Dijets: n dependence

•Photoproduction:

- Data described well by NLO QCD (Frixione & Ridolfi).

•DIS:

- DISASTER++ describes the data in the backward jet region, but it is too low in the forward jet region when using the (reasonable) choice of the hard scale µ² = Q² + (E_T)². The disagreement is largest at low Q² → missing resolved photon interactions in DISASTER++ ?
- Large theoretical uncertainty for the hard scale $\mu^2 = Q^2$ (not shown). This "hard" scale is quite soft at low Q^2 .

H1 dijects: NLO description

- H1: $2 < Q^2 < 80 \text{ GeV}^2$
- Data well reproduced by the NLO QCD calculations at high x_{γ} or when Q^2 is large.
- NLO calculations fail at low x_{γ} , low Q^2 and low $E_{T}.$
- Transversally polarised resolved photon contribution in JETVIP helps to get closer to the data, but still not enough.

Limited reliability of JETVIP due to the " y_{cut} " instability

H1 dijets: NLOJET++ ("NNLO")

- NLOJET++ in 2 jet mode in a very good agreement with DISENT.
- NLOJET++ in 3 jet mode takes into account one more QCD order with respect to DISENT, but it can only be used for $x_{\gamma} < 1$, (since there are always at least 3 jets guaranteed for $x_{\gamma} < 1$).
- NLOJET++ in 3 jet mode much closer to the data than DISENT, but ...
- still not enough to describe dijet cross section at low x_{γ} in the lowest Q² and E_T region.

(Eur.Phys.J.C40:469-472, 2005)

H1 dijets: LO MC

- The best description at low x_{γ} , low Q² and low E_{T} is provided by LO MC program (HERWIG) that takes into account:
 - parton showers
 - longitudinally polarised photon in resolved interactions
- However, HERWIG fails to describe the data at $x_{\gamma} \sim 1$.
- CASCADE, based on CCFM evolution equations and ignoring resolved photon interactions, describes data only in part of the phase space.

- The color factors C_F , C_A and T_F represent the relative strength of the $q \rightarrow qg$, $g \rightarrow gg$ and $g \rightarrow qq$ processes.
- Their values are predicted by the underlying gauge-group structure (e.g. SU(N): $C_F = (N^2 1)/2N$, $C_A = N$, $T_F = 1/2$).
- Since the qqg and ggg couplings have different spin structures, the color factors give rise a specific pattern of angular correlations between the final-state jets.

$$\sigma_{eP \rightarrow 3jets} = C_F C_F \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

Variables to highlight the contributions from the different color configurations → angular correlations between the jets:

- Θ_{μ} , the angle between the highest $E_{T jet}$ and the beam plane and the two lowest $E_{T jet}$ plane.
- α_{23} , the angle between two lowest $E_{T jet}$ jets.
- cos(b_{KSW}), defined as
 cos½{<[(p1xp3),(p2xpB)]+
 <[(p1xpB),(p2xp3)]},
 where pi (pB) are the momenta
 of the jets (unit vector in the
 direction of the proton beam).

ZEUS preliminary data 3 jet events

Data 95-00 $E_e = 27.5 \text{ GeV}; E_P = 820/920 \text{ GeV}$ Int. lumi = 127 pb⁻¹ $Q^2 < 1 \text{ GeV}^2$ E_{T.iet1,2,3} > 14 GeV -1 < η _{iet1,2,3} < 2.5 0.2 < y < 0.85 $X_{\gamma} > 0.7$ (direct enhanced sample) PDF ... MRST99 NLO QCD ... Klasen, Kleinwort & Kramer

ZEUS: Color Dynamics

- PYTHIA (SU(3)) reproduces the measured distributions reasonably well.
- The distributions for direct and resolved photon (~34%) processes are very similar.
- HERWIG (SU(3)) gives a poorer description than PYTHIA.

ZEUS: Color Dynamics

- The contribution σ_B exhibits a very different shape than the other contributions in all three distributions.
- The other contributions are best separated by α_{23} .
 - → These distributions are sensitive to different color configurations and show a potential to extract the color factors.

SU(3): σ_A ... 13% $\sigma_B \dots 10\%$ σ_c ... 45% σ_D ... 32%

ZEUS: Color Dynamics

- The predictions of SU(3) describe the data reasonably well.
- U(1)³ similar to SU(3) due to the smallness of $\sigma_{\rm B}$.
- Data disfavour $T_F/C_F \sim 0$ (e.g. SU(N) for large N).
- Data disfavour $C_F=0$ (which would correspond to no $q \rightarrow qg$ splitting).

- Dijets in photoproduction are well described by the NLO QCD calculations. They are suitable for constraining both proton and photon PDFs.
- The intermediate Q² region between photoproduction and DIS is not described by the theory yet. Possible areas for improvements:
 - Higher order calculations (beyond NLO).
 - Parton showers at NLO (MC@NLO).
 - Resolved photon interactions at low Q^2 in NLO.
 - Longitudinally polarised resolved photon.
- Jet angular correlations are consistent with the admixture of color configurations predicted by SU(3). Other gauge groups are clearly disfavoured, however new variables are needed to enhance the resolution power.