#### Heavy Flavour Production and the Hadronic Final State at High Energy ep Collisions



#### Thomas Kluge, DESY on behalf of the H1 and ZEUS Collaborations

HADRON 2005, 23 August 2005







# Outline

Talk by Tobias Haas: Introduction to HERA, structure functions, searches for new phenomena

This talk: analyses which study details of the hadronic final state



# Introduction

HERA phasespace: either DIS (Q<sup>2</sup>  $\geq$ 1GeV) or photoproduction  $\gamma p$  (Q<sup>2</sup> $\leq$ 1GeV)



**DIS**: need proton parton densities



γp: resolved contributes, need also photon parton densities

$$x_{\gamma} = \frac{1}{2yE_e} \sum_{i}^{2} p_{t,i} e^{-\eta_i}$$

low  $x_{\gamma}$ : resolved contributes, high  $x_{\gamma}$ : direct enriched

### Inclusive Jet Cross Sections in DIS



#### 2-Jet and 3-Jet Cross Sections in DIS



# **Parton Dynamics**





Dijets at low x and low Q<sup>2</sup>

low x: DGLAP evolution might fail low Q<sup>2</sup>: resolved photon important

# 2-Jet Cross Sections at low x and low $Q^2$

JETVIP (NLO,DGLAP) > undershoots at low Q<sup>2</sup>, low  $x_{\gamma}$ > even with resolved photons

NLOJET (NLO,DGLAP)
➢ offers also 3-jet phasespace,
➢ enriches low x<sub>γ</sub> without resolved photon

DGLAP ok Resolved photon<->higher orders



#### **Forward Jet Cross Sections**



Enrich phasespace for x evolution (BFKL)  $x_{jet} >> x_{bj}$ , forward jet

Suppress phasespace for  $Q^2$  evolution (DGLAP)  $p_t^2 \sim Q^2$ 

#### **Forward Jet Cross Sections**



MEPS: LEPTO(LO+PS,DGLAP) undershoots the data

CDM: ARIADNE(LO+PS,BFKL like) describes forward jets well NLO: DISENT(DGLAP) + had.corr. undershoots the data

NLO corrections and uncertainty large! need higher orders

# Diffractive 2-Jet Cross Sections in DIS and yp



Does QCD factorisation hold? ➤Use diffractive PDFs from inclusive for jet cross sections

Important application: diffractive Higgs at LHC

### **Diffractive 2-Jet Cross Sections in DIS**



Use diffractive PDF H1 2002 (inclusive data) for prediction of 2-jets

➢ factorisation holds in DIS!



# Diffractive 2-Jet Cross Sections in yp



ZEUS fits different from H1, especially gluon! NLO QCD fits to H1 and ZEUS data  $z \Sigma(z,Q^2)$ Q<sup>2</sup> [GeV<sup>2</sup>] Singlet g(z,Q<sup>2</sup>) Gluon 6.5 0.2 n 15 0.2 n 90 0.2 10 <sup>-1</sup> 10 <sup>-1</sup> -2 10 10 Ζ Ζ NLO fit to ZEUS Mx (exp. error) H1 2002 NLO fit (prel.) (exp. error) (exp.+theor. error)

# Subjet Distributions in DIS

Study internal structure of jets by running jet algo. again with finer resolution Sensitive to parton radiation q ZEUS  $(1/\sigma)~d\sigma/d(E_T^{sbj}E_T^{jet})$ C g • ZEUS (prel.) 98-00  $E_{T}^{jet} > 14 \text{ GeV}$ 3  $\textbf{-1} < \eta^{jet} < 2.5$ q-induced  $O^2 > 125 \text{ GeV}^2$ g-induced q q  $y_{cut} = 0.05$ (NLO) 2 NLO QCD: 18% contribution 82% contribution 1 a da contra da contra con 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 E<sup>sbj</sup>T/ET

NLO describes data, jets from q->qg dominate

# Prompt Photon Cross Sections in γp

pQCD: deals with partons: use jet algorithm

Alternative: detect γ radiated off quarks "prompt photons"



pros:no hadronisation, good E measurement

cons: low cross section, difficult  $\gamma$  identification



Shape: good description by NLO, normalistion too low

# Charm and Beauty Jet Cross Sections in yp

ep->e'ccX->e'jjX'

ep->e'bbX->e'jjX'

Cross section for and

NLO: Frixione et al. pPDF: CTEQ5D γPDF: GRV-G HO hadr. corrections



PYTHIA (LO+PS, direct + resolved) and FNMR(NLO, direct+resolved) agree well Both describe charm by shape and normalisation, but undershoot beauty

### D\* Cross Sections in γp



#### **Diffractive D\* Cross Sections in DIS**

Test of factorisation in diffractive DIS for heavy flavour production

NLO QCD (pomeron) pomPDF: ACTW fit B Peterson fragmentation



p

> predictions describe data well -> validity of QCD factorisation in DIS

# Elastic J/ $\Psi$ Production in $\gamma p$



# Search for Strange Pentaquarks in DIS



Charmed pentaquarks: talk by Yehuda Eisenberg

# Summary

Hadronic final states at HERA are a rich field with many high precision measurements available

Ideal testing ground for many properties of QCD

Perturbative QCD(+corrections) gives precise description for large x, large Q<sup>2</sup>

➢ low x, low Q<sup>2</sup> more difficult, higher order calculations desirable

Diffraction still a difficult topic

More data from HERA II will improve many analyses which are yet statistically limited (e.g. high E, jets, beauty)