

Searches for New Physics at HERA David South (DESY) On behalf of the H1 and ZEUS Collaborations

Outline

- Introduction to HERA
- Rare SM Processes
 - □ Isolated Leptons and Missing Transverse Momentum
 - Multi Lepton Events
 - □ General Search for New Phenomena
- Searches for BSM Physics
 - □ Leptoquark Production and Lepton Flavour Violation
 - □ SUSY and R-parity Violating Squark production
 - □ Bosonic Stop Decays in R-parity Violating SUSY
 - □ Search for Gaugino Production
 - □ Light Gravitinos in Events with Photons and Missing Transverse Momentum
- Summary of Results

HERA and the H1 and **ZEUS** Experiments

- ZEUS
- At the HERA collider in Hamburg, Germany 920 GeV protons are collided with 27.6 GeV electrons or positrons, at a centre of mass 319 GeV
- Physics programme: Measure the structure of the proton, SM constraints and search for physics beyond the SM
- About 120 pb⁻¹ of data collected by each experiment during HERA I phase (1992-2000)
- HERA II phase underway since 2003 with longitudinally polarised e beam, luminosity doubled by both experiments, much more data expected before 2007

Isolated Leptons and Missing P_T

- Experimental signature
 - □ Isolated lepton
 - □ Missing transverse momentum
 - □ Hadronic jet

SM processes

- □ Signal: Real W production, $\sigma \sim 1 \text{ pb}^{-1}$
- \square MC: EPVEC (Baur et al) + NLO (Spira et al)
- Main SM backgrounds from NC and CC DIS and di-lepton production

Results from HERA I

- □ Excess observed at high P_T^X in electron and muon channels by H1, not confirmed by ZEUS
- Slight excess observed in tau channel (not covered here) by ZEUS, not confirmed by H1

Isolated Leptons and Missing P_T

		Electron	Muon	Combined
H1 Preliminary		obs./exp.	obs./exp.	obs./exp.
		(Signal contribution)	(Signal contribution)	(Signal contribution)
1994-2004 e ⁺ p	Full Sample	19 / 14.60 \pm 2.03 (70%)	9/3.88±0.63 (84%)	28 / 18.48 ± 2.66 (73%)
$158 \ { m pb}^{-1}$	$P_T^X > 25 \text{ GeV}$	9 / 2.32 \pm 0.44 (80%)	$6/2.29\pm0.38~(84\%)$	$15 / 4.61 \pm 0.82 (82\%)$
1998-2005 e ⁻ p	Full Sample	6 / 5.78 ± 0.89 (62%)	0 / 1.47 ± 0.47 (76%)	6 / 7.25.± 1.36 (65%)
53 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	$2 / 0.90 \pm 0.15 (71\%)$	$0 / 0.91 \pm 0.16 (73\%)$	$2 / 1.81 \pm 0.31 (72\%)$
1994-2005 $e^{\pm}p$	Full Sample	25 / 20.38 \pm 2.92 (68%)	$9/5.35 \pm 1.10$ (82%)	34 / 25.73 ± 4.02 (71%)
211 pb ⁻¹	$P_T^X > 25 \text{ GeV}$	11 / 3.22 ± 0.59 (77%)	6/3.20±0.54 (81%)	$17 / 6.42 \pm 1.13 (79\%)$

- Excess continues to be seen by H1 high P_T^X in the HERA II e⁺p data
- No clear excess seen in e⁻p data (lower statistics)
- Fewer muon events in the HERA II data

Isolated Leptons and Missing P_T

H1 HERA II isolated lepton event at large P_T^X

Isolated e candidates	$12 < P_T^X < 25 \text{ GeV}$	$P_{T}^{X} > 25 \text{ GeV}$
ZEUS (prel.) HERA I 99-00 (66 pb ⁻¹)	$1 / 1.04 \pm 0.11$ (57%)	$1 / 0.92 \pm 0.09$ (79%)
ZEUS (prel.) HERA II 03-04 (40 pb ⁻¹)	$0 / 0.46 \pm 0.10$ (64%)	$0 / 0.58 \pm 0.09$ (76%)

- H1 excess not confirmed by ZEUS in new electron channel analysis
- More data needed to resolve these intriguing events!

Source - Single Top Production via FCNC?

- Single top production in SM is negligible at HERA
 production via FCNC anomalous tuγ coupling: sensitivity at HERA
- Sub-selection of isolated lepton event analysis no significant excess seen by H1 or ZEUS in the data - derive limits
- Limits do not rule out FCNC as explanation of isolated lepton events!

Multi Lepton Events at H1

- Main production mechanism at HERA $p \land X p \land X q \land \gamma$ from γ-γ interactions (elastic and inelastic) - modelled by GRAPE
- H1 analysis uses HERA I+II data, (209 pb⁻¹) and examines ee, μμ, eµ, eee and eµµ topologies search for events containing at least 2 high P_T electrons or muons clean topology

Selection	Data	SM	Pair Production	NC DIS + Compton
ee	190	196 ± 29	163 ± 17	33 ± 20
μμ	82	85 ± 16	85 ± 16	-
еμ	106	99 ± 13	61 ± 5	38 ± 10
eee	37	39 ± 4	39 ± 4	0.1 ± 0.1
еµµ	50	51 ± 8	51 ± 8	-

Data in agreement with SM in all event classes

Multi Lepton Events at H1

- At low mass combinations, good agreement with the SM
- Interesting events seen a large mass combinations (M > 100 GeV)
- 3 ee events (SM: 0.44 ± 0.10) and 3 eee events (SM: 0.29 ± 0.06) observed in HERA I data
- 2 eµµ events observed in HERA II data at high mass

Source - Doubly Charged Higgs Production?

- Production of H⁺⁺ boson with decay to leptons
- Sub-selection of multi lepton events
 - select same charge as beam for two high P_T leptons in final state
- Only one ee event compatibledoubly charged Higgs unlikely
- Limits derived on all relevant higgs couplings h_{ee}, h_{eµ}, h_{eτ}
- Improved limits on h_{eu} from HERA!

H1 General Search

- Presents a general picture of the H1 HERA I data at high P_T - and the consistency with the SM
- Look for isolated, high P_T particles: e, μ, γ, jet, ν

Selection Criteria:

 $P_T^{part} > 20 \text{ GeV}, 10 < \theta^{part} < 140, D(\eta - \phi)^{part} > 1.0$

- Events classed into exclusive channels (≥ 2 particles): e-j, j-j, j-v, e-j-j and so on...
- Overall agreement with the SM observed!

Leptoquark Production

Search for 7 scalar and 7 vector LQs (bosons with baryonic and leptonic quantum numbers)

 \Box Fermion number F = 3B + L (= 0 e⁺p, 2 e⁻p)

- DIS at HERA:
 - $\Box \quad \text{NC: ep} \rightarrow \text{eX}$
 - $\Box \quad CC: ep \rightarrow \nu X$
- First generation of LQs: decay to e, vlook for enhancement in mass spectra of NC and CC interactions
- No signal seen: derive limits on the 14 different LQ types as a function of mass
- For M < 300 GeV: resonant production
- For M > 300 GeV: contact interactions

David South (DESY)

Leptoquark Production with LFV

- Can also look for lepton flavour violating leptoquarks
 - \Box Look for final state muon or tau + jet
 - $\Box \quad \text{Convention: } \lambda_{eq} = \lambda_{\mu q'} \text{ or } \lambda_{eq} = \lambda_{\tau q'}$
- No signal seen: again, derive limits
- ZEUS: tau channel (F=0), masses up to 299 GeV excluded for $\lambda_{eq} = 0.3$
- H1: variable LQ coupling strength for fixed $\lambda_{eq} = 0.3$, masses up to 350 GeV excluded for BR(μ) of 0.5

David South (DESY)

Searches for New Physics at HERA

SUSY and R-parity

The most general SUSY (MSSM) model allows Yukawa couplings between two SM fermions and a sfermion, squark or slepton, introducing R-parity violation

 \square R_p = (-1)^{3B + L + 2S} (= 1 for SM particles, -1 for SUSY particles)

$$W_{R_{p}} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda_{ijk}' L_i Q_j \bar{D}_k + \lambda_{ijk}'' \bar{U}_i D_j \bar{D}_k$$

At HERA the resonant production of single SUSY particles is possible through e-q fusion

Search for Squark Production in R-parity Violating SUSY

- A complete search for resonant production of squarks of all flavours via the Yukawa coupling λ ' has been performed by H1 and ZEUS
- No evidence for squark production found
- At 95% C.L. squarks of all flavours with masses up to 280 GeV excluded for a coupling of electromagnetic strength

David South (DESY)

Searches for New Physics at HERA

ZEUS

Bosonic Stop Decays: Phenomenology

$$W_{R_p} \sim \lambda_{131}' e_L \tilde{t}_L \bar{d}_R + \lambda_{131}' \nu_{e,L} \tilde{b}_L \bar{d}_R$$

- Resonant production of a stop quark and the R-parity violating bosonic decay of stop and sbottom quarks via the λ'_{131} coupling complimentary to previous searches for squark production analysis
- Stop and sbottom quarks assumed the lightest in this model, where $M_{\tilde{t}} > M_{\tilde{b}}$
- Kinematic range of real bosonic decays:

$$M_{\tilde{t}} > M_{\tilde{b}} + M_W$$

- The decay mode $\tilde{t} \to ed$ is also analysed, which dominates for $M_{\tilde{t}} \leq M_{\tilde{b}} + M_W$
- Almost full coverage of branching ratios achieved by analysing these 4 channels

Searches for New Physics at HERA

Bosonic Stop Decays: Kinematic Selection

Slight excess observed in muon channel, but no significant deviation from SM

Stop Production Cross Section

 Assuming the presence of a stop mass, determine an allowed 1 sigma range Δσ_{t̃} for the stop production cross section

 $\sigma_{\tilde{t}}(M_{\tilde{t}}) = \frac{N_{Data} - N_{SM}}{\varepsilon \cdot BR \cdot \mathcal{L}}$

- Discrepancy in µjP_T^{miss} channel is not confirmed by other channels
- Probability that observed rate of $jjjP_T^{miss}$ channel fluctuates up to a level compatible with μjP_T^{miss} channel is ~ 1%
- Bosonic stop production does not explain the observed H1 high P_T isolated lepton events

Stop Production Limits

- Perform 5 SUSY parameter scan: $M_{\tilde{t}}, M_{\tilde{b}}, 0.6 < \theta_{\tilde{t},\tilde{b}} < 1.2$, $400 < \mu < 1000$
- For λ'_{131} of electromagnetic strength, stop masses up to 275 GeV are excluded
- For $M_{\tilde{b}} = 100$ GeV, at a $M_{\tilde{t}}$ of 275 GeV, the allowed domain is $\lambda'_{131} \le 0.3$
- Complementary results to previous HERA searches for squark production
 David South (DESY)
 Searches for New Physics at HERA

Search for Gaugino Production

- Search performed by ZEUS for the production of a neutralino $\tilde{\chi}_1^0$ via t channel selectron exchange
- The neutralino subsequently decays via cascade to an electron or positron and quark pair
- Main SM background due to dijet events in NC DIS
- No deviation from the SM observed: perform SUSY parameter scan in the MSSM framework to constrain μ and M₂
- Exclusion limits at 95% C.L. for $\tan\beta = 30$, $M_{\widetilde{e}} = 100 \text{ GeV}$ and $\lambda'_{111} = 1.0$ are extended with respect to previous limits set by LEP experiments

Light Gravitinos: Phenomenology

$$W_{R_p} \sim -\lambda'_{1jk} \tilde{e}_L u_L^j \bar{d}_R^k$$

- Main difference to other SUSY models is the mass of the Gravitino (\tilde{G}), which is small (< 10³ eV) and is the lightest SUSY particle (LSP)
- The single production of a neutralino has been investigated in this model, mediated by selectron exchange (while previous analyses assumed squarks within the kinematic limit)
- The analysis is completely independent of the squark sector
- Different couplings tested with e⁺ and e⁻ data
- GMSB models typically have 6 new parameters compared to the SM:

Λ : Mass scale of SUSY particles	$tan\beta$: ratio of Higgs vacuum expectation values
M : Mass of "messenger" particles $(m_{\tilde{e}}, m_{\tilde{x}})$	$sign(\mu)$: sign of Higgs mixing parameter
N : Number of messenger particles	\sqrt{F} : SUSY breaking scale (related to m _{\widetilde{G}})

Light Gravitinos: Kinematic Selection

Event Signature:

 $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ occurs with unobservably small lifetime: expect photon + jet + P_T^{miss}

- Main SM background: radiative CC
- Event Selection:

 $P_T^{photon} > 15 \text{ GeV}$ (isolated, no associated track) $P_T^{jet} > 5 \text{ GeV}$

 $P_{T}^{miss} > 25 \text{ GeV}$ (from Gravitino)

 Σ (E - P_z) > 15 GeV (against CC DIS)

- Selection efficiencies of 10 35%
- e^+p : No candidate observed (1.8 ± 0.2 SM)
- $e^{-}p$: One candidate observed (1.2 ± 0.2 SM)
- Assume one non-interacting particle: reconstructed neutralino mass, m = 36 ± 4 GeV

- For small Δm : neutralino masses up ~ 120 GeV are excluded for $\lambda^2 = 1.0$
- For masses close to 55 GeV, couplings $\lambda'_{1j1} > 0.3$ and $\lambda'_{11k} > 0.5$ are excluded
- First HERA limits on R-parity violating SUSY independent of squark sector

Summary of Results

- Many searches for new physics performed at HERA by the H1 and ZEUS collaborations - including data from the new HERA II phase
- Interesting events observed by H1 containing isolated leptons and missing P_T but not confirmed by ZEUS Single top not ruled out!
- Interesting high mass events containing multiple high P_T leptons also observed, but no evidence of Higgs double boson
- No evidence seen in searches for a large selection of exotic particles: leptoquarks, squarks, gauginos, bosonic stop decays and light gravitinos - competitive limits derived on such BSM scenarios, often ruling out particle masses up to 300 GeV
- More incoming data from HERA II expected to resolve the isolated lepton story

H1 General Search Statistical Interpretation

- Compare data event classes with prediction with that from many MC experiments, calculated according to the SM expectation
- P is then a measure of the significance of the the deviation observed in the data
- In each channel, low values of $-\log_{10}\hat{P}$ indicate good agreement between data/MC
- The global probabilities to find an event class with P smaller than that observed in the μ -j- ν channel are 3% (28%) for the $\Sigma P_T (M_T^{all})$ distributions

David South (DESY)

- Determine the region of greatest deviation p_{min} by estimating the probability of upward or downward fluctuations in the distributions
- The method can find narrow resonances and atypical events as well signals spread of large areas of phase space

- No significant deviation from SM : derive limits on GMSB model at 95% CL
- Limits less stringent at low neutralino masses due to lower detection efficiency
- For comparison, GMSB cross sections for different couplings λ'_{121} and λ'_{112} with fixed values of tan β , N and μ