Electroweak measurements at HERA

Yongdok Ri (Tokyo Metropolitan Univ.)

On behalf of

the H1 and ZEUS collaborations

20-25 Sep 2005

HSQCD05@St.Petersburg

Contents

•HERA and Deep Inelastic Scattering (DIS)

HERA-I : unpolarised e[±]p scattering
DIS cross sections with unpolarised e[±] beam
Determination of Electroweak Parameters

•HERA-II : polarised e[±]p scattering

•New feature at HERA-II

•DIS cross sections with polarised e[±] beam

Measurement of CC and NC Cross Sections

•Summary and Outlook

HERA is first and unique ep collider

Two collider experiments H1 and ZEUS

20-25 Sep 2005

HSQCD05@St.Petersburg

Deep Inelastic Scattering at HERA

$$Q^2 = -q^2 = -(k - k')^2$$

Virtuality of exchanged boson spatial resolution : $\lambda \approx \frac{1}{\sqrt{Q^2}}$

 $\frac{\mathbf{Q}^2}{\mathbf{2p} \cdot \mathbf{q}}$ momentum fraction of the struck quark

•Neutral Current : exchange of γ or Z⁰

•Charged Current : exchange of W[±]

 $\mathbf{s} = (\mathbf{p} + \mathbf{k})^2 \quad \mathbf{Q}^2 = \mathbf{s} \cdot \mathbf{x} \cdot \mathbf{y}$

Only two independent

inelasticity

 $\mathbf{y} = \frac{\mathbf{p} \cdot \mathbf{q}}{\mathbf{p} \cdot \mathbf{k}}$

DIS Event Characteristics

•Selection : presence of high P_T scattered electron

•Kinematics well reconstructed using either electrons or hadrons or both

•Accurate and high statistics which to check the detector response

•Selection : presence of large missing transverse momentum : P_T , miss

•Kinematics reconstructed using hadrons (only possible)

20-25 Sep 2005

Contents

 HERA and Deep Inelastic Scattering (DIS) •HERA-I : unpolarised e[±]p scattering •DIS cross sections with unpolarised e[±] beam Determination of Electroweak Parameters •HERA-II : polarised e[±]p scattering New feature at HERA-II •DIS cross sections with polarised e[±] beam Measurement of CC and NC Cross Sections Summary and Outlook

NC and CC cross sections

NC Cross Section

Structure Functions (SFs)

NC structure functions, F_2^{NC} and xF_3^{NC} , can be decomposed as

Experiment measures Cross-Sections and extract SFs

SFs : coupling constant ⊗Parton Distribution Functions (PDFs)

SFs can constrain PDFs and quark couplings to the Z boson v_q , a_q

Measured NC and CC cross sections

Combined EW-QCD fits (H1)

Using all H1 NC and CC data both e⁺p and e⁻p,

a combined Electro-Weak (EW) and QCD analysis is performed to determine electroweak parameters accounting for their correlation with PDFs

1. Propagator mass analysis

To determine the normalisation factor **G** and W propagator mass **M**_{prop}

2. Determination of quark couplings to Z^0

To extract $\mathbf{v}_{u,d}$, and $\mathbf{a}_{u,d}$

Propagator mass analysis (H1)

$\frac{d^2\sigma_{CC}(e^{\pm}p)}{dxdQ^2} \propto G_F^2 \times \frac{M_W^4}{(Q^2 + M_W^2)}$ In fit G-M_{prop}-PDFs, x 10 ⁻⁴ •Sensitivity to G : normalisation of G (GeV⁻²) G (GeV⁻²) the CC cross section **H1** G-M_{prop}-PDF •Sensitivity to M_{prop} : Q² dependence ← M_{prop}-PDF (G=G_F) •G is consistent with G_{F} obtained 0.12 from the muon lifetime measurement 68% CL •Demonstrating the universality of the CC interaction over a large range of Q² values 0.115 In fit \mathbf{M}_{prop} -**PDFs**, fixing G to G_{F} , ★ World Average $M_{prop} = 82.87 \pm 1.82(exp)_{-0.16}^{+0.30}(mod)GeV$ 75 80 85 •Measurement of propagator mass in M_{prop} (GeV) HERA **space-like** region is complementary and consistent with Tevatron/LEP time-like one

90

11

Determination of quark couplings to Z⁰ (H1)

At high Q² and high x, NC cross sections are sensitive to the up- and down-type quark couplings dominated by the **light u and d quarks**

Complementary measurement of heavy quark couplings measured very precisely by LEP

More sensitivity to the U couplings than to D couplings due to PDFs and to the a_q couplings than to v_q couplings for U due to xF₃^{NC} •Comparable precision to that from the Tevatron •Remove LEP ambiguities

Contents

•HERA and Deep Inelastic Scattering (DIS)

HERA-I : unpolarised e[±]p scattering
DIS cross sections with unpolarised e[±] beam
Determination of Electroweak Parameters

•HERA-II : polarised e[±]p scattering

•New feature at HERA-II

•DIS cross sections with polarised e^{\pm} beam

Measurement of CC and NC Cross Sections

•Summary and Outlook

New feature at HERA-II

High Luminosity \rightarrow sensitivity in High-Q² region

New feature at HERA-II (cont'd)

Longitudinal Polarisation of lepton beam → improve EW sensitivity

Polarisation effect on Cross Sections

CC : clear and large effect at HERA

•CC is pure weak, Cross Section linearly depends on Polarisation

•Direct sensitivity to Right-Handed charged current interaction

$$\sigma_{\rm CC}(P_{e^{\pm}}) = (1 \pm P_{e^{\pm}})\sigma_{\rm CC}(P_{e^{\pm}} = 0)$$

16

Polarised NC DIS cross section

$$\frac{\mathrm{d}^{2}\sigma^{\mathrm{NC}}(\mathrm{e}^{\pm}\mathrm{p})}{\mathrm{d}x\mathrm{d}Q^{2}} = \frac{2\pi\,\alpha^{2}}{\mathrm{x}Q^{4}} \begin{bmatrix} \mathrm{H}_{0}^{\pm} + \mathrm{P}_{\mathrm{e}}\mathrm{H}_{\mathrm{P}}^{\pm} \end{bmatrix}$$

Unpolarised contribution

Polarised contribution : only includes γ -Z and Z terms

$$\begin{split} F_{2}^{NC} &= F_{2}^{\gamma} - (v_{e} - \frac{P_{e}}{P_{e}} a_{e}) K_{Z} F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} - 2 \frac{P_{e}}{P_{e}} v_{e} a_{e}) K_{Z}^{2} F_{2}^{Z} \\ xF_{3}^{NC} &= -(a_{e} - \frac{P_{e}}{P_{e}} v_{e}) K_{Z} xF_{3}^{\gamma Z} + [2v_{e}a_{e} - \frac{P_{e}}{P_{e}} (v_{e}^{2} + a_{e}^{2})] K_{Z}^{2} xF_{3}^{Z} \end{split} \qquad K_{Z} = \frac{1}{4 \sin^{2} \theta_{W} \cos^{2} \theta_{W}} \frac{Q^{2}}{Q^{2} + M_{Z}^{2}} \\ [F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z}] &= x \sum_{q} [e_{q}^{2}, 2e_{q} v_{q}, v_{q}^{2} + a_{q}^{2}] (q + \overline{q}) [xF_{3}^{\gamma Z}, xF_{3}^{Z}] = 2x \sum_{q} [e_{q}a_{q}, v_{q}a_{q}] (q - \overline{q}) \end{split}$$

Polarised e^{\pm} beam helps to constrain v_{a}

HSQCD05@St.Petersburg

Data samples

10

10

10

0 10 20 30 40 50 60 70 80 90 100

P_{T.h}(GeV)

1500

1000 500

-50-40-30-20-10 0 10 20 30 40 50

Z_{vtx}(cm) 19

performing and well understood.

 Hadronic system measurement well understood and checked with NC real data for CC measurement

20-25 Sep 2005 Ready to unfold data to get cross-sections!

20

CC Total Cross-Section (H1)

CC Total Cross-Section (ZEUS)

CC Total Cross-Section : H1 and ZEUS

20-25 Sep 2005

HSQCD05@St.Petersburg

23

Summary

HERA has sensitivities to EW parameters

•HERA-I : Determination of Electroweak Parameters

•Propagator mass analysis

•Determination of quark couplings to Z⁰

•HERA-II : Measurement of CC and NC Cross Sections

•Pure weak CC cross sections were consistent with the SM prediction, i.e. consistent with the $\sigma_{\rm CC}(\rm RH)$ =0

•NC cross sections were consistent with the SM prediction with polarisation effect included.

Outlook

HERA-II with polarised e[±] beam and higher luminosity will significantly improve the electroweak measurements