Spectroscopy and charm fragmentation in ep collisions

Leonid Gladilin

(sponsored by DESY)

September 20-24, St.Petersburg, Russia

OUTLINE:

HERA and its charm charm fragmentation excited D mesons Results on $\Theta^+ \to K_s^0 p$ (+c.c.) Θ^{++} and $\Xi_{3/2}^{--,0}$ searches Results on $\Theta_c^0 \to D^{*-} p$ (+c.c.) Summary and Outlook

BACKUP:

light mesons in $M(\gamma\gamma)$ and $M(\pi^+\pi^-)$ light mesons in $M(K_s^0K_s^0)$ more on excited D mesons more on $\Theta^+ \to K_s^0 p$ (+c.c.) more on $\Theta_c^0 \to D^{*-}p$ (+c.c.)

$\begin{array}{c} \text{HERA} \longrightarrow \text{HERA II} \\ \\ E_{e}=27.6 \text{ GeV} \\ E_{p}=920 \text{ GeV} \\ \end{array} \begin{array}{c} E_{p}=920 \text{ GeV} \\ 1992-2000 \end{array} \begin{array}{c} \text{HERA II} \\ 2003-2007 \end{array}$

	HERA	HERA II		
	1992-2000	2003-2007		
\sqrt{s}	320 (300)	$320\mathbf{GeV}$		
\mathcal{L}	$1.5 \cdot 10^{31}$	$7 \cdot 10^{31} cm^{-2} s^{-1}$		
\mathcal{L}_{int}	0.1	$\sim 0.5 f b^{-1}$		
beam spot	150×30	$80 \times 20 \mu m^2$		
	ϵ	e^{\pm} long. pol. ($\approx 60\%$)		
$\sigma_{c\bar{c}} \approx 1\mu \mathbf{b} \Longrightarrow 10^8 \text{ events } (\mathcal{L}_{int} = 0.1f \mathbf{b}^{-1})$				
$\sigma_{b\bar{b}} \approx 10 \mathrm{nb} \Longrightarrow 10^6 \mathrm{events} \left(\mathcal{L}_{int} = 0.1 f\mathrm{b}^{-1}\right)$				

"QCD explorer" HERA tests (p)QCD predictions "Charm factory" HERA studies charm fragmentation

Kinematic variables and charm production

Charm production is expected to be described by pQCD:

Charm fragmentation issues

Important to study

charm fragmentation to find :

- 1) What is the proper parameterisation for the fractional transfer of *c*-quark energy/momentum to a given *D*-meson (z) ? fragmentation function, f(z)
- 2) Are u and d quarks produced equally ? $R_{u/d} = \frac{c\bar{u}}{c\bar{d}}$
- 3) What is the *s*-quark production suppression ? $\gamma_s = \frac{2 c \bar{s}}{c \bar{d} + c \bar{u}}$
- 4) Are vector (D^*) and pseudoscalar (D) mesons produced as predicted by spin counting ? $P_v = \frac{V}{V+PS}$ (= 0.75 ?)
- 5) What are the relative fragmentation fractions of charm hadrons ? $f(c \rightarrow D) = \frac{N(D)}{N(c)} = \frac{\sigma(D)}{\sum_{\text{all}} \sigma(D)}$
- 6) Are these functions, ratios and fractions universal ? compare HERA results with those in e^+e^- annihilations

Measurement of $c \rightarrow D^{*+}$ fragmentation function

In e^+e^- annihilations, $D^{*\pm}$ energy is related to $\sqrt{s}/2$. In ep ? 1) ZEUS: find jet containing $D^{*\pm}$ and relate the $D^{*\pm}$ energy to the energy of this jet: $Q^2 < 1 \text{ GeV}^2$, $P_T(D^{*\pm}) > 2 \text{ GeV}$, $E_T^{\text{jet}} > 9 \text{ GeV}$ $z = (E + p_{||})^{D^*}/(E + p_{||})^{\text{jet}} \equiv (E + p_{||})^{D^*}/2 E^{\text{jet}}$ 2) H1, jet method: $Q^2 > 2 \text{ GeV}^2$, $P_T(D^{*\pm}) > 1.5 \text{ GeV}$, $E_T^{\text{jet}} > 3 \text{ GeV}$ $z_{\text{iet}} = (E + p_{||})^{D^*}/(E + p)^{\text{jet}}$ in $\gamma^* p$

3) H1, hemisphere method:

$$z_{ ext{hem}} = (E+p_{||})^{D^*} / \sum_{ ext{hem}} (E+p) ~~ ext{in}~ \gamma^* p_{||}$$

Bowler and Kartvelishvili parameterizations

Parameters are extracted using MC (PYTHIA or RAPGAP+PYTHIA), i.e. they are optimized input parameters of the MC simulations

Peterson parameterization: $f(z) \propto \frac{1}{z(1-1/z-\epsilon/(1-z))^2}$

NLO fits are needed !

Charm fragmentation function in ep and e^+e^- collisions

ZEUS

Measurement of *c*-fragmentation ratios and fractions D^{\pm} and *c* ground states: D^0 , D_s^{\pm} , D^{\pm} and Λ_c^{\pm}

 $R_{u/d}$ measurement

$$\begin{split} R_{u/d} &= \frac{c\bar{u}}{c\bar{d}} = \frac{\sigma^{dir}(D^{0,*0})}{\sigma^{dir}(D^{\pm,*\pm})} = \frac{\sigma(D^0) - \sigma(D^{*\pm}) \times BR}{\sigma(D^{\pm}) - \sigma(D^{*\pm}) \times (1 - BR) + \sigma(D^{*\pm})} \\ &= \frac{\sigma(D^0) - \sigma(D^{*\pm}) \times BR}{\sigma(D^{\pm}) + \sigma(D^{*\pm}) \times BR} = \frac{\sigma^{\mathrm{untag}}(D^0)}{\sigma(D^{\pm}) + \sigma^{\mathrm{tag}}(D^0)} \quad , BR = B_{D^{*+} \to D^0 \pi^+} = (67.7 \pm 0.5) \% \end{split}$$

 $\overline{R_{u/d}} = 1.100 \pm 0.078 \, ({
m stat})^{+0.038}_{-0.061} \, ({
m syst})^{+0.047}_{-0.049} \, ({
m br}) \Big| ~~ ({
m ZEUS} ~ m \gamma p)$

consistent with isospin invariance

 \boldsymbol{u} and \boldsymbol{d} quarks are produced equally in charm fragmentation

and what about more precise measurement in DIS ?

$\gamma_{\rm s}$ measurement

$$\gamma_s = rac{2\,car{s}}{car{d}+car{u}} = rac{2\,\sigma(D_s^\pm)}{\sigma(D^\pm)+\sigma^{\mathrm{untag}}(D^0)+\sigma^{\mathrm{tag}}(D^0)+\sigma^{\mathrm{add}}(D^{*\pm})\cdot(1+R_{u/d})}$$

 D_s production suppressed by factor ≈ 3.9 in *c*-fragmentation

<u>note:</u> excited charm-strange mesons like to decay to non-strange D mesons \Rightarrow Lund strangeness-suppression parameter is 10 - 30% larger than the observable γ_s

 $P_{\rm v}^d$ measurement ($P_{\rm v}^d \equiv P_{\rm v}$ for $c\bar{d}/\bar{c}d$ mesons) $P_{\rm v}^d = \frac{V}{V+PS} = \frac{\sigma(D^{*\pm})}{\sigma(D^{*\pm}) + \sigma^{dir}(D^{\pm})} = \frac{\sigma^{\rm tag}(D^0)/BR + \sigma^{\rm add}(D^{*\pm})}{\sigma(D^{\pm}) + \sigma^{\rm tag}(D^0) + \sigma^{\rm add}(D^{*\pm})}$ $\overline{P_v^d = 0.566 \pm 0.025 \,(\text{stat})^{+0.007}_{-0.022} \,(\text{syst})^{+0.022}_{-0.023} \,(\text{br})} \, \left| \, \left(\mathbf{ZEUS} \, \gamma p \right) \right.$ ZEUS yp **ZEUS (prel.) DIS** H1 DIS $= \frac{f(c \to D^{*+})}{f(c \to D^{*+}) + f(c \to D^{*+}) \cdot BR}$ e⁺e⁻ comb. for H1 and e^+e^- 0.4 **8.0** 0.2 0.6 P_v^d naive spin counting does not work for charm $P_{\rm v} \neq 0.75$

challenge for fragmentation models:

thermodynamics and string fragmentation predict 2/3

BKL predicts ≈ 0.6 for e^+e^- where only fragmentation diagrams contribute for ZEUS γp kinematic range, BKL prediction is ≈ 0.66

Charm fragmentation fractions, $f(c \rightarrow D, \Lambda_c) = \sigma(D, \Lambda_c) / \sigma_{gs}$

consistent with universality of charm fragmentation fractions

a half of the difference in $f(c \to D^{*+})$ is due to the difference in $f(c \to \Lambda_c^+)$

Study of excited *D* mesons at HERA

Orbitally excited:
1)
$$D_1^0, D_2^{*0} \rightarrow D^{*+}\pi^-$$
 (+ c.c.)
2) $D_{s1}^+ \rightarrow D^{*+}K^0$ (+ c.c.) \implies discussion

Search for radially excited:

3)
$$D^{*'+} \rightarrow D^{*+} \pi^+ \pi^-$$
 (+ c.c.)

$$D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+) \pi_s^+$$
 (+ c.c.)
 $\Delta M = M(D^{*+}) - M(D^0) \sim m_{\pi}$
 $P_\perp^{D^*} > 2 \text{ GeV and } -1.5 < \eta^{D^*} < 1.5$

In the yellow band under background:

 $N(D^{*\pm}) = 31350 \pm 240$

Charm-strange $D_{s1}^{\pm}(2536)$ meson

Helicity angle α : between K_s^0 and π_s in $D^{*\pm}$ r.f. Fit to a form : $1 + R \cos^2 \alpha$ $R = -0.53 \pm 0.32(\text{stat.})^{+0.05}_{-0.14}(\text{syst.})$ (ZEUS prel.) CLEO $(D_{s1}^+ \rightarrow D^{*0}K^+)$: $R = -0.23^{+0.40}_{-0.32}$ ZEUS : consistent with R = 0, i.e. $J^P = 1^+$ does not contradict to R = -1 expected for 1^- , 2^+ Belle (recent) : $R = -0.70 \pm 0.03 \rightarrow$ mixture of D and S waves due to interf. with $D_{sJ}^+(2460)$?

Fragmentation fractions for excited *D* **mesons**

Using world average for $f(c \rightarrow D^{*+})$:

	$f(c \to D_1^0) ~[\%]$	$f(c \to D_2^{*0})$ [%]	$f(c \to D_{s1}^+) ~[\%]$
ZEUS (prel.)	$1.46 \pm 0.18^{+0.33}_{-0.27} \pm 0.06$	$2.00 \pm 0.58^{+1.40}_{-0.48} \pm 0.41$	$1.24 \pm 0.18^{+0.08}_{-0.06} \pm 0.14$
CLEO	1.8 ± 0.3	1.9 ± 0.3	
OPAL	2.1 ± 0.8	5.2 ± 2.6	$1.6 \pm 0.4 \pm 0.3$
ALEPH	1.6 ± 0.5	4.7 ± 1.0	$0.94 \pm 0.22 \pm 0.07$
DELPHI	1.9 ± 0.4	4.7 ± 1.3	

1) the same amounts of excited D mesons in e^+e^- and ep data

- 2) situation with $f(c \rightarrow D_2^{*0})$ is not clear
- 3) $f(c \rightarrow D_{s1}^+)$ is twice as large as the expectation :

 $\gamma_s \times f(c \to D_1^0) \approx 0.3 \times 2\% = 0.6\%$

Why $f(c \rightarrow D_{s1}^+)$ is so large ?

Is it connected wih its strange helicity ?

Strange pentaquarks

Diakonov, Petrov, Polyakov (hep-ph/9703373) Exotic Anti-Decuplet of Baryons: predictions from Chiral Solitons

exotic (S=B=+1) narrow baryon $\Theta^+ \to K^+ n$ observed by LEPS, CLAS, SAPHIR non-exotic decay mode $\Theta^+ \to K_s^0 p$ seen by DIANA, HERMES, COSY-TOF, SVD, ZEUS, ITEP

negative results from BES, HERA-B, CDF, ALEPH, DELPHI, L3, BABAR, BELLE, SPHINX, HyperCP, PHENIX and ... CLAS ($\gamma p \rightarrow K_s^0 K^+ n$) with $50 \times \text{SAPHIR}$

another exotic (S=-2, B=+1) narrow baryon $\Xi_{3/2}^{--} \rightarrow \Xi^{-}\pi^{-}$ reported by NA49 negative results from WA89, HERA-B, HERMES, CDF, ALEPH, BABAR, ZEUS, ...

$\Theta^{\pm} \to K_s^0 p(\bar{p}))$ observation in ep collisions ?

ZEUS : best signal for $Q^2 > 20 \, \text{GeV}^2$

Fit with 2nd Gaussian for $(\Sigma ?)$ bump around 1465 MeV

 $N = 221 \pm 48$, $M = 1521.5 \pm 1.5 \text{ MeV}$ width compatible with resolution For BW: $\Gamma = 8 \pm 4$ (stat.) MeV

 $\Longleftrightarrow \ {\rm signal \ seen \ in \ both \ charges} \\ N(\Theta^- \to K^0_s \bar{p}) = 96 \pm 34$

H1 : no significant signal in particular, for $Q^2 > 20 \, \text{GeV}^2$

> note : $\mathcal{L}_{int}(\text{ZEUS}) = 121 \, \text{pb}^{-1}$ $\mathcal{L}_{int}(\text{H1}) = 71 \, \text{pb}^{-1}$

Θ^+ cross section (ZEUS) and upper limit on it (H1)

production mechanism in *ep* collisions ?

 Θ^{\pm} may have unusual production mechanism related to proton-remnant fragmentation?

"Spectroscopy and charm fragmentation in ep" L. Gladilin

M (GeV)

Search for $\Theta^{++} \to K^+ p$ (+c.c.)

For *NK* bound state, both I = 0, 1 are possible I = 1: triplet $\Theta^0, \Theta^+, \Theta^{++}$ \Leftarrow search for $\Theta^{++} \rightarrow K^+ p$ (+c.c.) no signal

 $\longleftarrow \mathbf{no} \ \Theta^{++} \mathbf{signal} \ \mathbf{for} \ Q^2 < 20 \, \mathbf{GeV}^2 \\ \mathbf{as \ well}$

Does not contradict to Θ^{++} observation by STAR with $R(\Theta^{++}/\Lambda(1520)) \approx 0.1\%$

Search for pentaquarks with $S = \pm 2$

$M(\Xi\pi)$ and upper limit on $R(\Xi_{3/2}^{--,0}/\Xi^{0}(1530))$

ZEUS

approx. the same number of $\Xi^0(1530) \rightarrow \Xi^- \pi^+$ as in NA49

No $\Xi_{3/2}$ signal for $Q^2 > 1 \text{ GeV}^2$ and $Q^2 > 20 \text{ GeV}^2$; in all charge combinations $R(\Xi_{3/2}^{--,0}/\Xi^0(1530)) < 0.29$ (95% C.L.) in the NA49 signal region

Note: ZEUS studies central production

NA49 covers forward production

Charm pentaquarks

Jaffe-Wilczek (hep-ph/0307341): $M(\Theta_c^0) = 2710 \text{ MeV}$ Such Θ_c^0 would be too light to decay to D mesons can decay weakly to $\Theta^+\pi^-$

Karliner-Lipkin (hep-ph/0307343): $M(\Theta_c^0) = 2985 \pm 50 \text{ MeV}$ $\Gamma(\Theta_c^0) \sim 21 \text{ MeV}$

Such Θ_c^0 would decay to $D^{(*)-}p$ (+ c.c.)

H1 (hep-ex/0403017)observed a signal in $M(D^{*-}p)$ (+ c.c.) spectranegative results fromZEUS (hep-ex/0409033), ALEPH, BELLE,FOCUS, CDF, ...

$D^{*\pm}$ reconstruction for charm pentaquark searches

H1 96-00 data $(75 \, \mathrm{pb}^{-1})$

 $Q^2 > 1 \, \mathrm{GeV}^2, \ 0.05 < y < 0.7$ $P_T(D^{*\pm}) > 1.5 \, \mathrm{GeV}, \ -1.5 < \eta(D^{*\pm}) < 1.0$ $N(D^{*\pm}) \sim 3400$ (for $Q^2 < 1 \, \mathrm{GeV}^2$: $N(D^{*\pm}) \sim 4900$)

ZEUS 95-00 data (126 **pb**⁻¹**)**

two D^* decay channels: $p_T(D^*) > 1.35 \, \text{GeV}$ for $D^* \to (K\pi)\pi_s$ $p_T(D^*) > 2.8 \, \text{GeV}$ for $D^* \to (K\pi\pi\pi)\pi_s$ $|\eta(D^*)| < 1.6$ for both channels

Yellow bands used for Θ_c^0 search: $N(D^*) \sim 62500$, full sample $N(D^*) \sim 13500$, $Q^2 > 1 \, {\rm GeV}^2$

$M(D^*p)$ in DIS and photoproduction

ZEUS limits on Θ_c^0 rate

yellow signals: MC signals normalised to 1% of obs. D^* 1% visible rate is excluded at 9 σ for full sample at 5 σ for $Q^2 > 1 \text{ GeV}^2$ 95% C.L. upper limits:

visible rate $R(\Theta_c^0 \rightarrow D^*p/D^*)$ < 0.23% for full sample < 0.35% for $Q^2 > 1 \, {\rm GeV}^2$ acceptance corrected rate < 0.37% for full sample < 0.51% for $Q^2 > 1 \, {\rm GeV}^2$ $f(c \rightarrow \Theta_c^0) \times B(\Theta_c^0 \rightarrow D^*p)$ < 0.16% for full sample < 0.19% for $Q^2 > 1 \, {\rm GeV}^2$

H1 and **ZEUS** results on $\Theta_c^0 \to D^*p$ disagree

ZEUS $M(D^*p)$ with H1 selection criteria

ZEUS, $Q^2 > 1 \, \mathrm{GeV}^2$ ZEUS $(1.46 \pm 0.32)\%$ < 0.23% (95% C.L.) < 0.35% (95% C.L.) $(1.59 \pm 0.33^{+0.33}_{-0.45})\% < 0.37\%$ (95% C.L.) < 0.51% (95% C.L.) < 0.16% (95% C.L.) < 0.19% (95% C.L.) $f(c \to \Theta_c^0) \times B(\Theta_c^0 \to D^*p)$

HERA II data can help to resolve the disagreement

Θ_c^0 production mechanism in ep collisions ?

- $\Leftarrow \text{fragmentation model}: \textbf{RAPGAP(+PYTHIA)}$ with Θ_c^0 from $D_1(2420), D_2^*(2460)$ resetting
 - $= D^*p(3100) \text{ production suppressed}$ in the central rapidity region and above the model in the photon direction

otherwise the fragmentation model provide a reasonable description of $D^*p(3100)$ cross section shapes

 $D^*p(3100)$ fragmentation function

$$x_{\rm obs} = (E - p_z)^{D^*p} / \sum_{\rm hem} (E - p)$$

 Θ_c^0 seems to be produced in *c*-quark fragmentation

Summary

HERA produces competitive results on charm fragmentation and pentaquark searches

- Measurements of charm fragmentation at HERA generally support the hypothesis that fragmentation proceeds independently of the hard sub-process
- Rates of excited D^{**} mesons are close in e^+e^- and ep data. $D_{s1}^{\pm}(2536)$ shows questionable helicity distribution and "too large" $f(c \rightarrow D_{s1}^+)$
- $\Theta^+ \to K_s^0 p$ production observed in high- Q^2 DIS by ZEUS. H1 does not see the signal that is not in statistical contradiction with ZEUS. Studies suggest Θ^+ production in ep related to proton-remnant fragmentation
- no signature of $\Theta^{++} \rightarrow Kp$ that does not contradict to STAR observation
- no signature of $\Xi_{3/2}^{--,0} \to \Xi \pi$ although sensitivity is similar to NA49
- H1 and ZEUS results on $\Theta_c^0 \to D^*p$ disagree. Using larger statistics, ZEUS does not see a signal observed by H1. H1 studies suggest Θ_c^0 produced in *c*-quark fragmentation

Outlook

Light mesons in $M(\gamma\gamma)$ and $M(\pi^+\pi^-)$

Inclusive photoproduction of η , ρ^0 , $f_0(980)$ and $f_2(1270)$ at $W \sim 210 \text{ GeV}$

- $\Leftarrow Similar behavior vs p_T + m$ of pions and heavier light mesons
- \implies suggest similar production mechanism in q/g fragmentation

Light mesons in $M(K_s^0K_s^0)$

threshold enhancement $(f_0(980)/a_0(980)$?) contribution from $f_2(1270)/a_2^0(1320)$ $f'_2(1525)$ (fit agrees with PDF)

 $f_0(1710)$ (narrower but agrees with PDF) $M = 1726 \pm 7 \, \text{MeV}, \ \Gamma = 38^{+20}_{-14} \, \text{MeV}$

produced in the region where sizeable initial state gluon radiation is expected

additional hint for large gluonic component of $f_0(1710)$

Orbitally excited P-wave *D* **mesons**

 $D_1^0(2420), D_2^{*0}(2460) \to D^{*\pm}\pi^{\mp}$ $\Delta M^{ext} = M(K\pi\pi_S\pi_4) - M(K\pi\pi_s)$ **2-dimensional fit with fixed** M, Γ , resolution and helicity distr. : $\frac{dN}{d\cos\alpha} \propto 1 + 3\cos^2\alpha \qquad (1^+, L + s = 3/2)$ $\frac{dN}{d\cos\alpha} \propto 1 - \cos^2 \alpha \qquad (2^+, L + s = 3/2)$ helicity angle α : between π_4 and π_s in $D^{*\pm}$ rest frame $N(D_1^0) = 526 \pm 65$ $N(D_2^{*0}) = 203 \pm 60$

Additional narrow bump ? $N = 211 \pm 49$ $M = 2398.1 \pm 2.1(\text{stat.})^{+1.6}_{-0.8}(\text{syst.}) \text{ MeV}$ New D meson ? Interference ?

Search for radially excited $D^{*\prime\pm}$ meson

$$D^{*\prime\pm} \to D^{*\pm}\pi^+\pi^-$$

Observed by DELPHI (~ 5σ): M = 2637 MeV $\Gamma < 15 \text{ MeV}$

CLEO and OPAL did not confirm

 \Leftarrow ZEUS search

 $\Delta M^{ext} = M(K\pi\pi_S\pi_4\pi_5) - M(K\pi\pi_s)$

Search window: $2.59 < \Delta M^{ext} + M(D^{*+}) < 2.67 \,\text{GeV}$ covers both predictions and DELPHI's observation after backgr. subtraction: " $N(D^{*\prime\pm})$ " = 91 ± 75

Using world average for $f(c \rightarrow D^{*+})$: $f(c \rightarrow D^{*'+}) \cdot B_{D^{*'+} \rightarrow D^{*+} \pi^+ \pi^-} < 0.7\%$ (95% C.L.) (ZEUS prel.)

somewhat stronger than the 0.9% limit obtained by OPAL

[&]quot;Spectroscopy and charm fragmentation in ep" L. Gladilin

$M(K^0_s p(\bar{p}))$ for $Q^2>20\,{\rm GeV}^2$

 $Q^2 > 20 \, {
m GeV}^2$: best signal identification Fit with Gaussian + background (3 par.) $N = 155 \pm 40, \ M = 1522.2 \pm 1.5 \, {
m MeV}$ width compatible with resolution

Fit with 2nd Gaussian for (Σ ?) bump around 1465 MeV

 $N = 221 \pm 48$, $M = 1521.5 \pm 1.5 \text{ MeV}$ width compatible with resolution For BW: $\Gamma = 8 \pm 4$ (stat.) MeV

 $\Leftarrow signal seen in both charges$ $N(\Theta^- \to K_s^0 \bar{p}) = 96 \pm 34$

$M(K_s^0p(\bar{p}))$

large background

signal becomes visible for $Q^2 > 10 \, \mathrm{GeV}^2$

ARIADNE (JETSET) MC (normalized to data above 1.65 GeV) does not reproduce the shape. $\Sigma(1480), \Sigma(1560)$ bumps ?

for $Q^2 > 1 \, \mathrm{GeV}^2$, signal is visible for $W < 125 \, \mathrm{GeV}$

$M(D^*p)$ for large proton momenta

particles taken as protons w/o dE/dx requirements

"protons" from signal region $(3.085 < M(D^*p) < 3.115 \, \text{GeV})$ have harder momentum distribution than "protons" from side bands

> For P(p) > 2 GeV, clean signal is seen even w/o use of dE/dx

← background is well described by 2-component model

$p(\bar{p})$ identification, ZEUS

improved dE/dx calibration w.r.t. Θ^+ analysis resolution ~ 9%

param. tuned using tagged $p(\bar{p})$ from Λ^0 decays

to select $p(\bar{p})$ candidates $Prob(\chi^2) > 0.15$ $A(Prob(\chi^2) > 0.15) = 85.0 \pm 0.1\%$ $M(D^*p)$, ZEUS

no signal in either distribution

ZEUS Θ_c^0 **MC** and extended ΔM method

To prepare signal MC, Θ_c^0 was emulated by redefining mass, width and decay channel of $\Sigma_c^0(ddc)$

 e^+e^- : ALEPH, Θ_c^0 in Z^0 decays ?

e^+e^- : BELLE, Θ_c^0 in B^0 decays ?

dE/dx, ToF and Čerenkov for particle identification B identification : $\Delta E = (\sum_i E_i) - E_{beam}$ for $M_{bc} = \sqrt{E_{beam}^2 - (\sum_i \vec{p_i})^2} > 5.27 \,\text{GeV}$ $N(B^0 \rightarrow D^{*-}p\bar{p}\pi^+) = 60 \pm 8$

$$\frac{\mathcal{B}_{(B^0\to\Theta_c^0\bar{p}\pi^+)\times\mathcal{B}(\Theta_c^0\to D^{*-}p)}}{\mathcal{B}_{(B^0\to D^{*-}p\bar{p}\pi^+)}} < 11\% \text{ (90\% C.L.)}$$

γA : FOCUS, Θ_c^0 in dedicated charm experiment ?

$p\bar{p}: \mathbf{CDF}, \Theta_c^0$ in high energy experiment ?

 $\approx 500000 D^{*\pm}$ in the full sample dE/dx and ToF for $p(\bar{p})$ identification

 \Leftarrow no signal

In the window (3099.0 ± 17.4) MeV $N(\Theta_c^0 \rightarrow D^{*-}p) < 21$ for $\Gamma = 0$ MeV

 $N(\Theta_c^0 \to D^{*-}p) < 32$ for $\Gamma = 12 \,\mathrm{MeV}$

while $N(D_1^0, D_2^{*0} \to D^{*+}\pi^-) \approx 10000$