HSQCD2005, 20-24th September St. Petersburg

Proton Structure

Joerg Gayler, DESY

Introduction

emphasis is on recent results from H1 and ZEUS at HERA

NC, CC Inclusive DIS

 $Q^2 = -q^2$ $y = (P \cdot q)/(P \cdot k)$

4-momentum transfer $x = Q^2/2(P \cdot q)$ p momentum fraction of parton inelasticity

$$egin{aligned} NC & d^2\sigma^\pm_{NC}/dx dQ^2 = rac{2\pilpha^2}{xQ^4}[Y_+\cdot ilde{F}_2\ \mp\ Y_-\cdot x ilde{F}_3 - y^2\cdot ilde{F}_L] \equiv rac{2\pilpha^2}{xQ^4}Y_+ ilde{\sigma}^\pm_{NC} \ Y_\pm = 1\pm(1-y)^2 \end{aligned}$$

 $ilde{F}_2$, dominating contribution, in leading order QCD $\sim x \sum_q e_q^2 (q + ar q)$ $x ilde{F}_3$, in particular γZ interference, significant at large $Q^2 \gtrsim M_Z^2$ $\sim x \sum_q A_q(q-\bar{q})$ $ilde{F}_L$, longitudinal contribution, zero in LO QCD sensitivity at large y,

$$CC = d^2 \sigma^\pm_{CC}/dx dQ^2 = rac{G_F^2}{2\pi x} (rac{M_W^2}{Q^2+M_W^2})^2 ullet ilde{\sigma}^\pm_{CC}$$

LO $\tilde{\sigma}_{CC}^+ = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$ $\tilde{\sigma}_{CC}^- = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$

3

large phase space covered by HERA e^+p e^-p data

illustrating electro-weak unification

new data from HERA II

dependence on electron polarisation in CC

HSQCD05

J. Gayler

Proton pdfs from NC and CC data

QCD factorisation in matrix elements and pdfs, parton density functions describing hadronic particles

Inclusive eN DIS data are the most important source for pdf determinations

fixed target	large x valence and sea distributions
HERA	low x gluon and sea distributions (gluon indirectly from scaling violations)
Tevatron $(p\bar{p})$	gluon at medium and large x from jets (previously mostly from prompt photons)

HERA experiments aim to determine the gluon at medium x as well as u and d valence (free of nulear effects of ed scattering)

HSQCD05

7

J. Gayler

New technique in high x region

 Q^2 is well measured by electron, but x needs jet information

sketch of ZEUS detector

at very high x , jet moves into beam pipe consider jets with $E_T > 10 \text{ GeV}$, $\Theta > 0.12 \text{ rad}$ reconstruct 1 jet \longrightarrow some x - binreconstruct 0 jets $\longrightarrow x_{edge}(Q^2) < x < 1$ discard >= 2 jets

e.g. jet multiplicities well described by correcting MC (LEPTO/MEPS)

analysed e^+p 65 pb⁻¹ e^-p 17 pb⁻¹

consistent with expectation over wide range of Q^2

Results

NC e+p, ratio to NLO expectation

data close to expectation, but tend to be above at highest x to include in pdf fits

HSQCD05

u - d separation at high x

using CC (and NC) HERA disentangles flavours free of nuclear effects

HSQCD05

J. Gayler

input from HERA at low x, Q^2

main behaviour for x < 0.01

$$\mathbf{F}_2 = \mathbf{c}(Q^2) \cdot \mathbf{x}^{-\lambda(Q^2)}$$

 $Q^2 > 3 \ {
m GeV}^2 \ \lambda \sim \ln(Q^2/\Lambda^2) \qquad {
m c} pprox {
m const}$

 $\begin{array}{l} Q^2 \approx 1 \ {\rm GeV}^2 \\ \lambda \ {\rm deviates \ from \ log \ dependence} \end{array}$

expect $\lambda \to 0.08$ for $Q^2 \to 0$ from soft hadronic interactions

rise of the parton densities vs low x increasing with Q^2

HSQCD05

J. Gayler

increased sensitivity to gluons using inclusive ep and jets in QCD analysis

 $d\sigma/dE_T^{jet1}$ (pb/GeV)

jets sensitive to gluon distribution in LO

in BGF full correlation with α_s , different in QCD-Compton graphs

Recent fits by H1 and ZEUS

procedure :• parametrisation of pdfs at starting scale Q_0^2 • Q^2 dependence by DGLAP pQCD evolution in NLO• pdf parameters at Q_0^2 determined by fits to σ_{red} at $Q^2 > Q_{min}^2$ main differences in :• used data• parametrisations at Q_0^2 • treatment of heavy quarks• treatment of systematics					
H1 PDF 1997 Eur.Phys. J C21 (2001)	H1 PDF 2000 Eur.Phys. J C30 (2003)	ZEUS-S Phys.Rev.D67 (2003)	ZEUS-JET Eur.Phys. J C42 (2005)		
other experiments used $\frac{\text{BCDMS}}{\text{BCDMS}} (\mu p)$ fittted distributions	$(\mu p, \mu d)$ $u + c, \ \bar{u} + \bar{c}$	BCDMS, NMC, E665, CCFR $(\mu p,\ \mu d) \ (\nu Fe)$ $u_v,\ d_v$	(but jets) $u_v, \ d_v$		
ep valence and sea terms	$d+s, \ \bar{d}+\bar{s}, \ g$	$S, \ \bar{d} - \bar{u}, \ g$	$S, \ \bar{d} - \bar{u}, \ g$		
$Q_0^2 \ Q_{min}^2$ 4 3.5 main aim $lpha_s \ g(x)$	4 3.5 pdfs	7 2.5 pdfs $\alpha_{\rm s}$	7 2.5 pdfs $\alpha_{\rm s}$		

HSQCD05

16

J. Gayler

 $x\overline{U}$

Comparison of ZEUS-JETS with H1 pdf 2000 and global fitters

α_s

results of inclusive DIS pdf fits (with $\alpha_s(M_Z)$ as free parameter) consistent with final state analyses and world average

- exp. precision calls for NNLO analysis
 - calculations exist (Moch, Vermaseren, Vogt)

substantial measured charm and beauty fractions (see talk of Mark Bell) H1 PDF 1997 H1 PDF 2000 ZEUS-S, -JET f^{-} H1 Data • f^{cc} • f^{bb} 10 massless **VFNS** massive x = 0.0002 x = 0.0005 on high Q2 variable flavour number weight on low Q2 10 $Q^2 >> M_{\rm HO}^2$ scheme MRST04 f^{cc} MRST04 10 tcc NLO LO 10 x = 0.002x = 0.005tpp 10 HQ BGF HQ **Boson Gluon Fusion** x = 0.013 x = 0.032 10 H1 Data (High Q²) • $f^{cc} \bullet f^{bb}$ $\begin{array}{l} f^{c\bar{c}} \ \ \textbf{\sim 20\% to 30\%} \\ f^{b\bar{b}} \ \ \textbf{\sim 0.3\% to 3\%} \end{array}$ 10⁻²L $10^{2} \text{ geV}^{-10^{3}} \text{ 10}^{-10^{3}}$ $\int_{0}^{2} \sqrt{\frac{10^{3}}{\text{GeV}^{2}}}$ 10² 10² 10 constrain pdfs directly ? 21 HSQCD05 J. Gayler

treatment of charm and beauty

beyond collinear pdfs

collinear pdfs contain no information on parton transverse momenta, parton correlations, proton spin...

GPDs (generalised parton densities, non-integrated pdfs) are deduced from final state data (and the collinear pdfs)

many final states discussed with non-integrated pdfs see talks of jets, in particular forward jets Didar Dobur, Mark Sutton prompt photons (most recently by Lipatov, Zotov)

vector mesons $\ \rho... \ J/\psi \ ... Y$ DVCS Niklaus Berger

open charm, beauty

Mark Bell

Diffractive processes \implies ''diffractive pdfs''

Vitaly Dodonov

Conclusion and Outlook

- Beautiful inclusive HERA I data available over 4 orders of magitude in x and Q^2
- pdf determinations are improving

+ controlled systematics

- + inclusion of ep jet data improves gluon determination
- still more HERA I NC data will be finalised
- α_s and pdf precision will improve with NNLO analyses
- HERA II will strongly improve precision at high Q^2 and provides polarised cross sections

more stuff

HERA e⁻p Charged Current

heavy quark piece in F_2

charm and beauty fractions of cross section

fractions well described by MRST04

