

St. Petersburg, Russia, 20-24 September 2005

Diffraction at HERA

Vitaliy Dodonov

MPI-K, Heidelberg and JINR, Dubna

On behalf of the H1 and ZEUS collaborations

- Introduction
- Measurements of F_2^D and QCD fits
- Test of QCD factorization with jets and charm
- Summary
- > DVCS and Vector Meson topics are presented by Niklaus Berger

HERA

Electron/positron-proton collider. $E_e = 27.6 \text{ GeV} E_p = 920 \text{ GeV}$ Two colliding experiments: H1 and ZEUS (Js = 319 GeV) Fixed target experiment: HERMES

The results presented in this talk are based on HERA-I data

Vitaliy Dodonov, Diffraction at HERA,

HSQCD Workshop, 20-24 September 2005, St. Petersburg

3

Diffraction kinematics

Kinematic variables definition

Colorless exchange, vacuum quantum numbers

- proton survives the collision intact or dissociates to low mass state
- large region in pseudorapidity is left empty
- small momentum transfer t

$Q^2 = -q^2$	photon virtuality
$x = rac{Q^2}{2q \cdot p}$	Bjorken scaling variable
$W^2 = (p+q)^2$	$\gamma^* p$ CM energy squared
$t = (p - p_Y)^2$	4-momentum transfer squared
$x_{I\!\!P} = rac{q \cdot (p-Y)}{q \cdot p}$	fraction of p momentum transferred
1.6	to $I\!\!P$ ($x_{I\!\!P} \simeq 1 - E_Y/E_p$)
$oldsymbol{eta} = rac{Q^2}{2q\cdot(p-Y)}$	fraction of $I\!\!P$ momentum carried
1. Mar. 1. 1997 - 1997 - 1997	by struck quark ($x_{I\!\!P}eta=x$)
M_X	Inv. mass of system X

$\sim 10\%$ of DIS events at HERA are diffractive

Cross section of inclusive diffraction

Cross Section

$$\frac{d\sigma}{d\beta dQ^2 dx_{IP} dt} = \frac{2\pi\alpha}{\beta Q4} \left(1 - y - y^2/2\right) \cdot \sigma_r^{D(4)} \left(\beta, Q^2, x_{IP}, t\right)$$

 $\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(4)} - \text{reduced diffractive cross section}$

QCD factorization – proven in diffractive DIS (Collins 1997) $\sigma^{D}(\gamma^{*}p \to Xp) \propto \sum_{i} f_{i,p}^{D}(x_{IP}, t, x, Q^{2}) \otimes \sigma^{\gamma^{*}, i}(x, Q^{2})$ $f_{i,IP}^{D} \quad \text{-- diffractive parton distribution function}$ $\sigma^{\gamma^{*}, i} \quad \text{-- universal hard scattering cross section}$

At HERA we usually measure cross section integrated over t

Diffractive event selection - 1

Leading proton method (scattered proton detected in "Roman Pots")

Using Forward/Leading Proton Spectrometers at H1 and ZEUS

6

Diffractive event selection - 2

Large rapidity gap method

No activity in the forward region of the H1 detector:

 $\eta_{\text{max}} < 3.2$

No hits in proton remnant tagger.

Diffractive event selection - 3

ZEUS M_x method

 $\ln M_X^2$ distribution

$$\frac{dN}{d \ln M_X^2} = \mathbf{D} + \mathbf{c} \cdot exp(\mathbf{b} \cdot \ln M_X^2)$$

- exponential rise with M_X for non-diffractive events
- different shape for diffractive events

Fit subtracts non-diffractive events

Comparison of F_2^D measurements

Good agreement between three methods and two experiments

Q^2 dependence

 $x \cdot F_2$ increases with $Q^2 \rightarrow$ positive scaling violation up to large β Suggests large gluon contribution to diffractive PDF

Vitaliy Dodonov, Diffraction at HERA,

QCD Fit to $F_2^{D(3)}$

Apply same NLO QCD DGLAP technique to Q^2 and β dependencies as for inclusive DIS

- quark density directly from F₂^D
- gluon density from scaling violation

Assume Regge factorization: PDF = Pomeron-flux x Pomeron-parton-density

 $F_{2}^{D(4)}(x_{IP}, t, Q^{2}, \beta) = f_{IP/P}(x_{IP}, t)F_{2}^{IP}(Q^{2}, \beta)$

H1 NLO QCD fit - diffractive PDFs

Fraction of the overall diffractive exchange momentum carried by gluons in NLO fit

- assume Regge factorization
- determined from NLO QCD analysis of diffractive structure function
- large uncertainty at large z_P
- gluon carries 75%±15% of pomeron momentum

This fit to preliminary H1 data is used in following for comparison with exclusive processes

NLO QCD fits to H1 and ZEUS data

Fit to H1 and ZEUS data by Paul Laycock, Paul Newman, Frank-Peter Schilling

This differ from H1 2002 fit, so could be larger uncerntanty in PDFs

ZEUS NLO QCD fit to F_2^D and charm

- x_{IP} <0.01
- ·QCDNUM
- \cdot Regge factorisation assumption possible for this small data set
- \cdot DL flux
- initial scale $Q^2=2 \ GeV^2$
- $\cdot zf(z) = (a_1 + a_2 z + a_3 z^2)(1 x)^{a_4}$
- $\boldsymbol{\cdot}$ other PDFs parametrisation tried
- Thorne-Robert variable-flavournumber-scheme
- QCD fit describes data

 $(\chi^2 / ndf = 37.9 / 36)$

fractional gluon momentum $(82 \pm 8(stat) \pm 9(sys))\%$

shape of pdfs not well constrained

[F₂^{D(3)cc} from DESY-03-094]

Vitaliy Dodonov, Diffraction at HERA,

Diffractive D* in DIS

Vitaliy Dodonov, Diffraction at HERA,

Jet Production in DIS

NLO calculations: DISENT with diffractive PDFs

good description. factorization holds

Vitaliy Dodonov, Diffraction at HERA,

Jets in photoproduction

Factorization failed in diff. yp, continued

Kaidalov, Khoze, Martin and Ryskin: In real photoproduction the resolved contribution is suppressed by 0.34. (Phys.Lett.B567 (2003) 61)

But suppression of only resolved component by factor 0.34 is not favored by these measurements:

Good prediction with NLO when using diffractive PDFs globally suppressed by factor ~ 0.5 .

Jets in γp with leading neutron production

$$e + p \rightarrow e' + n + jet + jet + X$$

Photoproduction (Q² < 10⁻² GeV²)
pQCD is applicable (Monte Carlo models, theory calculations)

NLO calculation describes the jet cross sections both in shape and normalization

D* in diffractive photoproduction

First D* measurement in diffractive phoroproduction at HERA!

Statistics: 450 candidates

shape of data is well described by LO MC

NLO calculations are in progress:

 test whether the factorization is hold or broken in diffractive D* PhP

- High precision HERA data with wide range in Q² (1.5 1600 GeV²) have improved our understanding of diffraction
- **QCD** factorization in dijets and charm:
- holds in DIS
- fails in photoproduction for dijets in both direct and resolved regions
- **ZEUS:** first measurement of **D**^{*} in diffractive photoproduction
- **HERA-II: more data to come...**

template

Vitaliy Dodonov, Diffraction at HERA,