Measurement of Jet Cross Sections and $\alpha_{\rm S}$ at HERA

Arnd E. Specka Laboratoire Leprince-Ringuet Ecole Polytechnique - CNRS/IN2P3 France

on behalf of the H1 and ZEUS collaborations

- QCD is a one-parameter theory (neglecting m_q, θ_{QCD}): $\Lambda_{QCD} \leftrightarrow \alpha_S(m_Z)$
- α_{s} measurements in Deep Inelastic Scattering (DIS):
 - scaling violations (QCD fits of structure functions)
 - event and jet shapes
 - Jet cross-sections

- QCD is a one-parameter theory (neglecting m_q, θ_{QCD}): $\Lambda_{QCD} \leftrightarrow \alpha_S(m_Z)$
- α_{s} measurements in Deep Inelastic Scattering (DIS):
 - scaling violations (QCD fits of structure functions)
 - event and jet shapes
 - Jet cross-sections

• production of n + 1(remnant) jets in leading order proportional to ${lpha_{\sf S}}^{{\sf n}-1}$

- QCD is a one-parameter theory (neglecting m_q, θ_{QCD}): $\Lambda_{QCD} \longleftrightarrow \alpha_S(m_Z)$
- α_{s} measurements in Deep Inelastic Scattering (DIS):
 - scaling violations (QCD fits of structure functions)
 - event and jet shapes
 - Jet cross-sections

• production of n + 1 (remnant) jets in leading order proportional to $\alpha_S n^{-1}$

"QCD Compton"

"Boson-Gluon-Fusion"

"2 jet production at NLO"

- QCD is a one-parameter theory (neglecting m_q, θ_{QCD}): $\Lambda_{QCD} \leftrightarrow \alpha_S(m_Z)$
- α_{s} measurements in Deep Inelastic Scattering (DIS):
 - scaling violations (QCD fits of structure functions)
 - event and jet shapes
 - Jet cross-sections

• production of n + 1(remnant) jets in leading order proportional to $\alpha_{\sf S}^{{\sf n}-1}$

"QCD Compton"

"Boson-Gluon-Fusion"

"2 jet production at NLO"

• inclusive jet cross-section: high statistics, infrared safe (no asymmetric cuts)

 ratio tri-jet / di-jet cross-section: lower statistics, partial cancellation of syst. errors (luminosity, hadronic energy scale, parton distribution functions)

Jet Observables in the Breit Frame

• Definition of Breit frame in naive quark-parton model (and no intrinsic p_T): γ and q collide head on, $\vec{p}_q^{out} = -\vec{p}_q^{in}$

transverse momentum in Breit frame stems mainly from QCD process

Jet Observables in the Breit Frame

• Definition of Breit frame in naive quark-parton model (and no intrinsic p_T): γ and q collide head on, $\vec{p}_q^{out} = -\vec{p}_q^{in}$

transverse momentum in Breit frame stems mainly from QCD process

- Iongitudinally invariant k_T jet-algorithm in the Breit Frame
 - collinear and infrared safe
 - ► iterative clustering $d_{i,j} = \min(E_{T,i}^2, E_{T,j}^2) \cdot ((\eta_i \eta_j)^2 + (\phi_i \phi_j)^2)$
 - ▶ result: n jets with $d_{i,j} > R_0$ where $R_0 = 1$

Jet Observables in the Breit Frame

• Definition of Breit frame in naive quark-parton model (and no intrinsic p_T): γ and q collide head on, $\vec{p}_q^{out} = -\vec{p}_q^{in}$

transverse momentum in Breit frame stems mainly from QCD process

- Iongitudinally invariant k_T jet-algorithm in the Breit Frame
 - collinear and infrared safe
 - ► iterative clustering $d_{i,j} = \min(E_{T,i}^2, E_{T,j}^2) \cdot ((\eta_i \eta_j)^2 + (\phi_i \phi_j)^2)$
 - ▶ result: n jets with $d_{i,j} > R_0$ where $R_0 = 1$
- Sources of experimental systematic uncertainties:

 - model dependence for data correction (detector, hadronization, parton showers, QED)
 - absolute hadronic energy scale

• jet cross-sections calculated in perturbative QCD at fixed order of $\alpha_{\sf S}$:

$$\sigma_{\rm jet} = \sum_{i=q,\bar{q},g} \int dx \, f_i(x,\mu_{\rm F},\alpha_{\rm S}) \hat{\sigma}_{\rm QCD}(x,\mu_{\rm F},\mu_{\rm R},\alpha_{\rm S}(\mu_{\rm R})) \cdot (1+\delta_{\rm had})$$

• measure strong coupling through $\alpha_{\rm S}$ dependence of $\sigma_{
m jet}$

• jet cross-sections calculated in perturbative QCD at fixed order of $\alpha_{\sf S}$:

$$\sigma_{\rm jet} = \sum_{i=q,\bar{q},g} \int dx \, f_i(x,\mu_{\rm F},\alpha_{\rm S}) \hat{\sigma}_{\rm QCD}(x,\mu_{\rm F},\mu_{\rm R},\alpha_{\rm S}(\mu_{\rm R})) \cdot (1+\delta_{\rm had})$$

• measure strong coupling through $\alpha_{\rm S}$ dependence of $\sigma_{\rm jet}$

- truncated pertubation series \Rightarrow explicit μ_{R} dependence
- choice of jet-observables, kinematic region, etc. where pQCD most predictive \Rightarrow low k-factors (NLO/LO), low μ_R dependence

• jet cross-sections calculated in perturbative QCD at fixed order of $\alpha_{\sf S}$:

$$\sigma_{\rm jet} = \sum_{i=q,\bar{q},g} \int dx \, f_i(x,\mu_{\rm F},\alpha_{\rm S}) \hat{\sigma}_{\rm QCD}(x,\mu_{\rm F},\mu_{\rm R},\alpha_{\rm S}(\mu_{\rm R})) \cdot (1+\delta_{\rm had})$$

• measure strong coupling through $lpha_{\sf S}$ dependence of $\sigma_{\sf jet}$

^

- truncated pertubation series \Rightarrow explicit μ_{R} dependence
- choice of jet-observables, kinematic region, etc. where pQCD most predictive \Rightarrow low k-factors (NLO/LO), low μ_R dependence
- possible choices of μ_R and $\mu_F : Q, E_T, f(Q, E_T)$ assess theoretical uncertainty due to missing higher orders through μ_R -dependence of σ_{jet} and measured α_S by varying $\mu_R \rightarrow$ convention: $\mu_R \nearrow 2\mu_R$ and $\mu_R \searrow 0.5\mu_R$

• jet cross-sections calculated in perturbative QCD at fixed order of $\alpha_{\sf S}$:

$$\sigma_{\rm jet} = \sum_{i=q,\bar{q},g} \int dx \, f_i(x,\mu_{\rm F},\alpha_{\rm S}) \hat{\sigma}_{\rm QCD}(x,\mu_{\rm F},\mu_{\rm R},\alpha_{\rm S}(\mu_{\rm R})) \cdot (1+\delta_{\rm had})$$

• measure strong coupling through α_{S} dependence of σ_{jet}

^

- truncated pertubation series \Rightarrow explicit μ_{R} dependence
- choice of jet-observables, kinematic region, etc. where pQCD most predictive \Rightarrow low k-factors (NLO/LO), low μ_R dependence
- possible choices of μ_R and $\mu_F : Q, E_T, f(Q, E_T)$ assess theoretical uncertainty due to missing higher orders through μ_R -dependence of σ_{jet} and measured α_S by varying $\mu_R \rightarrow$ convention: $\mu_R \nearrow 2\mu_R$ and $\mu_R \searrow 0.5\mu_R$
- pQCD calculation programs \rightarrow implementation of user jet algorihm
 - **DISENT:** 2+1 jets NLO (α_{s}^{2})
 - ▶ NLOJET++: 3+1 jets NLO(α_{S}^{3})

$150 < Q^2 < 5000 \text{GeV}^2, 0.2 < y < 0.6$ $\overline{dE_T d^2}$

• inclusive jets phase space: $E_{T,Breit}^{jet} > 7 GeV, -1.0 < \eta_{Lab} < 2.5$

DIS phase space:

- Data correction (det.&QED): (CDM[DJANGO]+MEPS[RAPGAP])/2
- dominating exp. uncertainty: abs. hadronic energy scale \rightarrow vary E in HCAL by $\pm 2\%$
- NLO pQCD (NLOJET):
 - ▶ scales: $\mu_{\mathsf{R}} = \mathsf{E}_{\mathsf{T}}, \mu_{\mathsf{F}} = \mathsf{Q}$
 - ▶ PDFs: CTEQ5M1
 - hadronization corrections: (CDM[DJANGO]+MEPS[RAPGAP])/2

Measurement of Inclusive Jet Cross-Sections (H1)

Measurement of Inclusive Jet Cross-Sections (H1)

good agreement between pQCD (NLOJET) prediction and data over full phase space

$\alpha_{\rm S}$ Measurement from Inclusive Jets (H1)

• parametrize pQCD prediction for cross-section in bin (i): $\sigma_{iet}^{(i)}(\alpha_S) = A_i \cdot \alpha_S + B_i \cdot \alpha_S^2$

- fit α_{s} in each bin of δ° double-diff. cross-section
- consider exp. syst. errors partially correlated
- scales: $\mu_{\mathsf{R}} = \mathsf{E}_{\mathsf{T}}, \mu_{\mathsf{F}} = \mathsf{Q}$

• $\chi^2/{\rm ndf} = 20.14/14$

$\alpha_{\rm S}$ Measurement from Inclusive Jets (H1)

• parametrize pQCD prediction for cross-section in bin (i): $\sigma_{iet}^{(i)}(\alpha_S) = A_i \cdot \alpha_S + B_i \cdot \alpha_S^2$

- fit α_{s} in each bin of δ° double-diff. cross-section
- consider exp. syst. errors partially correlated
- scales: $\mu_{\mathsf{R}} = \mathsf{E}_{\mathsf{T}}, \mu_{\mathsf{F}} = \mathsf{Q}$

• $\chi^2/{
m ndf} = 20.14/14$

$Q^2 > 125 GeV^2$, $|\cos \gamma_{HAD}| < 0.65$

- inclusive jets phase space: $E_{T,Breit}^{jet} > 8 GeV, -2.0 < \eta_{Breit}^{jet} < 1.5$
- Measure: $\frac{d\sigma_{jet}}{dQ^2}$, $\frac{d\sigma_{jet}}{dE_T}$, and $\frac{d\sigma_{jet}}{d\eta_{Breit}^{jet}}$ • dominating exp. error: hadr. E-scale • vary $E_{T,Breit}^{jet}$ by $\pm 1\%$ ($\pm 3\%$ if $E_{T,Lab}^{jet} < 10 \text{GeV}^2$)
 - ▶ typical effect ob $\sigma_{\rm jet}:\pm 5\%$
- Comparison with pQCD (DISENT):
 - ▶ scales: $\mu_{\mathsf{R}} = \mathsf{E}_{\mathsf{T}}(\mathsf{or} \mathsf{Q}), \mu_{\mathsf{F}} = \mathsf{Q}$
 - ▶ PDFs: MRST99

DIS phase space:

• hadr. and Z^0 exchange corrs: ARIADNE

good description of data

(slightly better with $\mu_{\mathsf{R}} = \mathsf{E}_{\mathsf{T}})$

α_{S} Measurement from Inclusive Jets (ZEUS)

• fit $\alpha_{\rm S}$ -parametrized pQCD prediction to $\frac{{\rm d}\sigma_{\rm jet}}{{\rm d}{\rm E}_{\rm T}}$ and $\frac{{\rm d}\sigma_{\rm jet}}{{\rm d}{\rm Q}^2}$

• alternatively: running $\alpha_{\rm S} \longrightarrow$ fit $\alpha_{\rm S} (\langle E_T \rangle)$ - or $\alpha_{\rm S} (\langle Q \rangle)$ -parametrized pQCD

A. Specka (Ecole Polytechnique, France) HEP2005, Lisboa, 22.07.05

Measurement of 2-jet and 3-Jet Cross-Sections (H1)

- data correction(detector & QED, but no EW):
 (DJANGO+RAPGAP)/2 → Dijets: ×1.10, Trijets: ×0.95
- Comparison with NLOJET:
 - ▶ scales: $\mu_{\mathsf{R}} = \mu_{\mathsf{F}} = \mathsf{Q}$
 - ▶ PDFs: CTEQ5M (CTEQ4A for α_{s} fits)
 - **b** had. corrs: Dijets: $\times 0.93$, Trijets: $\times 0.75$

α_{S} Measurement from 3-jet / 2-jet Cross-Section Ratio (H1)

- $R_{3/2}$ well described by pQCD where EW effects negligable \rightarrow exclude highest Q^2 bin
- fit $\alpha_{\rm S}$ parametrized NLO pQCD prediction (NLOJET) for $R_{3/2}$

α_{S} Measurement from 3-jet / 2-jet Cross-Section Ratio (H1)

- $R_{3/2}$ well described by pQCD where EW effects negligable \rightarrow exclude highest Q^2 bin
- fit $\alpha_{\rm S}$ parametrized NLO pQCD prediction (NLOJET) for $R_{3/2}$

$\alpha_{\rm S}$ Measurement from 3-jet / 2-jet Cross-Section Ratio (H1)

• $R_{3/2}$ well described by pQCD where EW effects negligable \rightarrow exclude highest Q^2 bin

• fit $\alpha_{\rm S}$ parametrized NLO pQCD prediction (NLOJET) for $R_{3/2}$

 $\alpha_{\rm S}({\rm m_Z}) = 0.1175 \pm 0.0017({\rm stat.}) \pm 0.0050({\rm exp.}) \ {+0.0054 \atop -0.0068} \ ({\rm th.})$

Measurement Multi-jet Cross-Sections (ZEUS)

$\alpha_{\rm S}$ Measurement from 3-jet / 2-jet Cross-Section ratio (ZEUS)

ZEUS 0.5 $(d\sigma/d\Omega^2)_{trijet}$ / $(d\sigma/d\Omega^2)_{dijet}$ a) **ZEUS 98-00** ٠ Energy Scale Uncertainty CTEQ6 NLO \otimes C_{had} : 1/16 < μ_R^2 / (Q²+ \bar{E}_T^2) < 1 0.45 ∇T 0.4 0.35 0.3 0.25 $M_{2jets}(M_{3jets}) > 25 \text{ GeV}$ 0.2 data / NLO b) 1.2 1.15 1.1 1.05 1 0.95 0.9 0.85 0.8 10² 10³ 10¹ Q² (GeV²)

α_{S} Measurement from 3-jet / 2-jet Cross-Section ratio (ZEUS)

α_{S} Measurement from 3-jet / 2-jet Cross-Section ratio (ZEUS)

 $\alpha_{\rm S}({\rm m_Z}) = 0.1179 \pm 0.0013({\rm stat.}) \begin{array}{c} +0.0028 \\ -0.0046 \end{array} ({\rm exp.}) \begin{array}{c} +0.0064 \\ -0.0046 \end{array} ({\rm th.})$

Summary of $\alpha_{\rm S}~$ Measurements with Jets at HERA

Conclusion and Perspectives

th. uncert.

exp. uncert.

0.1

- $\alpha_{\rm S}$ measurements from HERA are
- ... mutually consistent
- ... all consistent with world average
- ... competitive
- theory uncertainty > exp. error
 (≫ for combined α_S)
- dominating theor. uncertainty: renormalization scale dependence
 NNLO jet calculations needed
- dominating exp. uncertainty: hadronic energy scale (jet E)
 → room for improvement with HERA2 data

