Physics With Leading Neutrons at HERA

W. Schmidke
Columbia Univ.
On behalf of the H1 and ZEUS collaborations

- Motivation: One pion exchange
 Absorption (rescattering)
- Leading neutrons (LN) in DIS and photoproduction (γp) with dijets:
 rates and kinematic dependences comparison with
 - standard fragmentation models
 - pion exchange models
 - NLO QCD calculations
- p_T spectra of leading neutrons in inclusive DIS & photoproduction:
 - comparison to pion exchange models
 - effects of absorption
- Summary
Motivation: One Pion Exchange

One Pion Exchange: (O.P.E.):
- Proton fluctuates into virtual π-n system
- Virtual π interacts with $\gamma^{(*)}$
- Real n can be detected
- Cross section factorizes:
 \[
 \sigma_{ep\rightarrow eXn}(W^2, Q^2, x_L, t) = f_{\pi/p}(x_L, t)\sigma_{e\pi}(1-x_L)W^2, Q^2)
 \]
- Lepton vertex variables ~ independent of baryon vertex variables

LN can result from 'standard' fragmentation

LN observables (baryon variables):
- $x_L = E_n / E_p$
- p_T or $t = -p_T^2 / x_L - m_N^2 (1-x_L)^2 / x_L$
- Models predict x_L, p_T^2 distributions

Lepton variables e.g. DIS:
- $Q^2 = \gamma^* 4$-mom. 2
- $W = \gamma^* -p$ c.m. E

Lepton vertex variables

\[\gamma^* \to e^- \pi^+ n \rightarrow e^- e' \pi^+ n \rightarrow e^- e' \
\]
Motivation: Rescattering model

- γ size $\sim 1/Q$ ($Q = \gamma$ virtuality):
 - \Rightarrow more rescattering at lower Q^2; compare DIS ($Q^2 > 0$) and γp ($Q^2 \sim 0$)
- In π exchange models, $\langle r_{n\pi} \rangle$ smaller at lower x_L:
 - \Rightarrow more rescattering @ lower x_L
- Smaller $\langle r_{n\pi} \rangle \sim$ higher p_T:
 - \Rightarrow fewer high $p_T n$ in photoproduction, steeper p_T distributions
Motivation: Rescattering

- Ratio of x_L distributions: γp/DIS each normalized by inclusive (no LN requirement) cross section
- Observed fewer low x_L neutrons in γp than in DIS ✔
- Same trend in rescattering (absorption) model of D'Alesio & Pirner

Here will compare p_T^2 distributions in DIS and γp for the first time
LN detectors:
Forward Neutron Calorimeter (FNC)

- ~100 m from I.P. in proton direction
- Protons bent upward; FNC acceptance at 0°

ZEUS FNC:
- Pb-scintillator sandwich
- $\sigma_{E}/E \approx 70%/\sqrt{E}$
- Position detector hodoscope 1 λ_1 deep
- $\sigma_{x,y} = 2.3$ mm
- p_T resolution dominated by proton beam spread

H1 FNC:
- Pb-scintillator spaghetti
- $\sigma_{E}/E \approx 20\%$ for $E_n > 300$ GeV
LN with dijets: Data sample & kinematics

- Hadronic final state w/ 2 high E_T jets:
 $$e+p \rightarrow e'+n+jet_1+jet_2+X$$
 $E_{T1} > 7$ GeV, $E_{T2} > 6$ GeV

- Samples in γp ($Q^2 < 0.01$ GeV 2) and DIS ($2 < Q^2 < 80$ GeV 2) regimes

- Jets characterized by E_T, η (pseudorapidity)

- Also: x_γ, fractional momentum of the parton from photon which enters the hard interaction
 - $x_\gamma \sim 1$: direct γp, photon pointlike
 - $x_\gamma < 1$: resolved γp, photon has structure, size
LN with dijets: Monte Carlo models

<table>
<thead>
<tr>
<th>Photoproduction</th>
<th>DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>π-exchange</td>
<td>RAPGAP-π, POMPYT</td>
</tr>
<tr>
<td>Inclusive (no π-exchange)</td>
<td>PYTHIA-MI, PYTHIA</td>
</tr>
<tr>
<td>NLO calculations (π-exch.)</td>
<td>M.Klasen & G.Kramer</td>
</tr>
</tbody>
</table>

- RAPGAP, LEPTO 'standard' DIS MC; PYTHIA 'standard' γp MC
- $\text{RAPGAP-}\pi = \text{RAPGAP} + \pi$-exchange
- $\text{POMPYT} = \text{PYTHIA} + \pi$-exchange, similar results as RAPGAP-π
- $\text{PYTHIA -MI} = \text{PYTHIA} + \text{multi-parton interactions}$; necessary to describe inclusive dijet γp
- $\text{LEPTO-SCI} = \text{LEPTO} + \text{soft color interactions}$; LN production enhanced via non-perturbative color rearrangements
- Hadronization corrections applied to NLO calculation, determined from MC
- Here models passed through detector simulation, compared to uncorrected data
LN with dijets: x_L spectra

- Well described by π-exchange MC models
- 'Standard' DIS models predict too low neutron rate
- 'Standard' γp model PYTHIA w/ multiple interactions predicts too high rate w/o multiple interactions PYTHIA give reasonable description of x_L

$$x_L = \frac{E_{FNC}}{E_{p\text{-beam}}}$$
LN with dijets: kinematic dependencies

- Well described by π-exchange MC models
- PYTHIA describes LN data, but not inclusive γp
- LEPTO-SCI too low; PYTHIA-MI too high at low x_{γ}: too much resolved
- NLO QCD calculation, corrected for hadronization describes the data
LN with dijets: LN ratios

Fraction of inclusive dijet γp with LN: test of factorization

- f_{LN} almost independent of E_T^jet: factorization
- f_{LN} strong dependence on x_γ; not phase space (PYTHIA): factorization breaking
- Fewer LN at low x_γ, resolved photon region
- Resolved photon 'larger': absorption effect? A calculation would be nice...
LN in DIS: p_T^2 distributions

- LN in inclusive DIS regime: $Q^2 > 2 \text{ GeV}^2$
- Limited neutron scattering angle $\Rightarrow p_T^2 < 0.476 x_L^2 \text{ GeV}^2$

Data here corrected for acceptance, resolution

Well described by exponential $\exp(-b p_T^2)$

b characterizes steepness of p_T^2 distribution

b consistent with zero for $x_L < 0.3$
LN in DIS: p_T^2 distributions

- Numerous models for π-exchange in the literature
- Essentially different form factors at $p-n-\pi$ vertex
- Parameterized from low energy $pp, \pi p$ data
- Not exponential, but can MC models and fit like data
- None describe data over whole x_L range
- π-exchange expected to dominate for $0.6 < x_L < 0.9$; Bishari0 closest (also simplest model)
- Varying contributions other than π-exchange across x_L?

References in HEP2005 paper #343
LN in γp & DIS: p_T^2 distributions

- Compare LN in DIS and γp ($Q^2 < 0.02$ GeV2) regimes
- Normalize @ $p_T^2 = 0$ GeV2 to compare slopes
- In γp relatively fewer LN at high p_T^2
- Qualitatively consistent with expectation from absorption model
Some systematic uncertainties on $b(\gamma p)$, b(DIS) cancel in $\Delta b = b(\gamma p) - b$(DIS)

Slopes in γp larger than in DIS for $0.6 < x_L < 0.9$

Qualitatively consistent with expectation from absorption

Quantitative comparison would be nice

\Rightarrow need a calculation...
Summary

'Standard' fragmentation does not describe LN production: generally predict too low LN rate

\(\pi \)-exchange models give reasonable description of LN in \(\gamma p \) & DIS: LN rate, \(x_L \) spectra, kinematic dependencies

\(\pi \)-exchange models in literature do not describe \(p_T \) spectra very well:

- contributions from other processes?

Effects consistent with absorption have been observed:

- LN in inclusive \(\gamma p \), resolved \(\gamma p \) of dijets

New calculations of absorption would be nice:

- \(x_\gamma \), LN \(p_T \) dependencies

An invitation to our calculational colleagues!