Physics With Leading Neutrons at HERA

W. Schmidke Columbia Univ. On behalf of the H1 and ZEUS collaborations

- Motivation: One pion exchange Absorption (rescattering)
- Leading neutrons (LN) in DIS and photoproduction (γ*p*) with dijets: rates and kinematic dependences comparison with
 - standard fragmentation models
 - pion exchange models
 - NLO QCD calculations
- p_{T} spectra of leading neutrons in inclusive DIS & photoproduction:
 - comparison to pion exchange models
 - effects of absorption
- Summary

Motivation: One Pion Exchange

One Pion Exchange: (O.P.E.):

- Proton fluctuates into virtual π -*n* system
- Virtual π interacts with $\gamma^{(*)}$
- Real *n* can be detected
- Cross section factorizes:

 $\sigma_{ep \to eXn}(W^2, Q^2, x_L, t) = f_{\pi/p}(x_L, t)\sigma_{e\pi}((1-x_L)W^2, Q^2)$

• Lepton vertex variables ~ independent of baryon vertex variables

> LN observables (baryon variables): • $x_{L} = E_{n}/E_{r}$

- $p_T \text{ or } t = -p_T^2/x_I m_N^2(1-x_I)^2/x_I$
- Models predict x_{1} , p_{T}^{2} distributions

Motivation: Rescattering model

• γ size ~ 1/Q (Q = γ virtuality):

 \Rightarrow more rescattering at lower Q²; compare DIS (Q²>0) and γp (Q²~0)

• In π exchange models, $\langle \mathbf{r}_{n\pi} \rangle$ smaller at lower \mathbf{x}_{L} :

 \Rightarrow more rescattering @ lower x₁

- smaller $\langle \mathbf{r}_{n\pi} \rangle$ ~ higher \mathbf{p}_{T} :
- \Rightarrow fewer high $p_T n$ in photoproduction, steeper p_T distributions

Motivation: Rescattering

ZEUS

Here will compare p_{T}^{2} distributions in DIS and γp for the first time

LN detectors: Forward Neutron Calorimeter (FNC)

- ~100 m from I.P. in proton direction
- Protons bent upward; FNC acceptance at 0°

ZEUS FNC:

 Pb-scintillator sandwich
 σ_E/E ≈ 70%/√E
 Position detector hodoscope 1 λ₁ deep

σ_{x,y} = 2.3 mm
p_T resolution dominated by proton beam spread

H1 FNC:

Pb-scintillator spaghetti

• $\sigma_{\rm E}/E \approx 20\%$ for $E_{\rm n} > 300 \, {\rm GeV}$

LN with dijets: Data sample & kinematics

• Hadronic final state w/ 2 high E_{T} jets:

 $e+p \rightarrow e'+n+jet_1+jet_2+X$ $E_T^{-1}>7 \text{ GeV}, E_T^{-2}>6 \text{ GeV}$

- Samples in γp (Q ²<0.01 GeV ²) and DIS (2<Q ²<80 GeV ²) regimes
- Jets characterized by E_{T} , η (pseudorapidity)
- Also: x_{γ} , fractional momentum of the parton from photon which enters the hard interaction
 - $x_{\gamma} \sim 1$: direct γp , photon pointlike
 - $x_{y} < 1$: resolved γp , photon has structure, size

LN with dijets: Monte Carlo models

	Photoproduction	DIS
π -exchange	RAPGAP- π , POMPYT	RAPGAP-π
Inclusive (no π -exchange)	PYTHIA-MI, PYTHIA	RAPGAP, LEPTO, LEPTO-SCI
NLO calculations (π -exch.)	M.Klasen & G.Kramer	

- RAPGAP, LEPTO 'standard' DIS MC; PYTHIA 'standard' γ*p* MC
- RAPGAP- π = RAPGAP + π -exchange
- POMPYT = PYTHIA + π -exchange, similar results as RAPGAP- π
- PYTHIA -MI = PYTHIA + multi-parton interactions;
 necessary to describe inclusive dijet γp
- LEPTO-SCI = LEPTO + soft color interactions;
 - LN production enhanced via non-perturbative color rearrangements
- Hadronization corrections applied to NLO calculation, determined from MC
- Here models passed through detector simulation, compared to uncorrected data

LN with dijets: x₁ spectra

• Well described by π -exchange MC models

- Standard' DIS models predict too low neutron rate
- 'Standard' γp model PYTHIA w/ multiple interactions predicts too high rate w/o multiple interactions PYTHIA give reasonable description of x_r

LN with dijets: kinematic dependencies

- Well described by π -exchange MC models
- PYTHIA describes LN data, but not inclusive γp
- LEPTO-SCI too low; PYTHIA-MI too high at low x_{y} : too much resolved
- NLO QCD calculation, corrected for hadronization describes the data

LN with dijets: LN ratios

Fraction of inclusive dijet γp with LN: test of factorization

• f_{LN} almost independent of E_T : factorization

- f_{LN} strong dependence on x_{y} ; not phase space (PYTHIA): <u>factorization breaking</u>
- Fewer LN at low x_{y} , resolved photon region
- Resolved photon 'larger': absorption effect? A calculation would be nice...

LN in DIS: p_T² distributions

• LN in inclusive DIS regime: Q 2 >2 GeV 2

• Limited neutron scattering angle $\Rightarrow p_T^2 < 0.476 x_L^2 \text{ GeV}^2$

LN in DIS: p_T^2 distributions

References in HEP2005 paper #343

- Numerous models for π -
- exchange in the literature
- Essentially different form factors at *p*-*n*-π vertex
- Parameterized from low energy pp, πp data
- Not exponential, but can MC models and fit like data
- None describe data over whole x_L range
- π -exchange expected to dominate for 0.6<x_L<0.9; Bishari0 closest

 \mathbf{x}_{L} (also simplest model)

• Varying contributions other than π -exchange across x_{L} ?

LN in γp & DIS: p_T^2 distributions

Compare LN in DIS and γp (Q ²<0.02 GeV ²) regimes
Normalize @ p_T²=0 GeV ² to

compare slopes

- In γp relatively fewer LN at high p_T²
- Qualitatively consistent with expectation from absorption model

LN in γp & DIS: p_T^2 distributions

- Some systematic uncertainties on b(γp), b(DIS) cancel in $\Delta b = b(\gamma p)$ -b(DIS)
- Slopes in γp larger than in DIS for $0.6 < x_1 < 0.9$
- Qualitatively consistent with expectation from absorption
- Quantitative comparison would be nice
 - \Rightarrow need a calculation...

Summary

- 'Standard' fragmentation does not describe LN production: generally predict too low LN rate
- π -exchange models give reasonable description of LN in γp & DIS: LN rate, x_L spectra, kinematic dependencies
- π-exchange models in literature do not describe p_T spectra very well: contributions from other processes?
- Effects consistent with absorption have been observed:
 LN in inclusive γp, resolved γp of dijets
- New calculations of absorption would be nice:
 - x_{y} , LN p_{T} dependencies
- An invitation to our calculational colleagues!