

Forward Jet Production at HERA

Patrick Ryan University of Wisconsin

On Behalf of the H1 and ZEUS Collaborations

HEP2005 Europhysics Conference Lisbon, Portugal

Perturbative expansion of evolution equations

- ~ $\Sigma_{mn} \mathbf{A}_{mn} \ln(\mathbf{Q}^2)^m \ln(1/x)^n$
- Cannot be explicitly calculated to all orders
- Equations to calculate QCD evolution
 - DGLAP Resum in In(Q²): $\Sigma(\alpha_s \ln Q^2)^n$
 - BFKL Resum in ln(1/x): $\Sigma(\alpha_s \ln 1/x)^n$
 - CCFM Resum in In(Q²) and In (1/x)
- Regions of validity
 - DGLAP Large Q², x not small
 - BFKL Small x, Q² not too large
 - CCFM Valid in large x range

- Strongly ordered in trans momentum: k_{T,1} << k_{T,2} << ... << k_{T,n} << Q²
- Ordered in x: $x_1 > x_2 > ... > x_n > x$

•BFKL:

- Strongly ordered in x: $x_1 >> x_2 >> \dots >> x_n >> x$
- No k_T ordering \rightarrow Eta democracy
- Predicts additional hadrons from high p_T forward partons

•Experiments: Try to distinguish between evolution equations

Forward Jet Production at HERA, Patrick Ryan, Univ. of Wisconsin

- DGLAP Evolution expected to describe most of HERA kinematic range
 - Find region where DGLAP not guaranteed to be valid
- Search for signs of BFKL dynamics
 - Suppress events strongly ordered in virtuality
 - Require Jet $p_T^2 \sim Q^2$
 - Require large E_{Jet}/E_{Proton}
 - Forward Jet (close to Proton)
 - BFKL predicts larger fraction of small x events will contain high E_T events than DGLAP
 - Can also tag forward Particles

Monte Carlo and Calculations

- Monte Carlo
 - LEPTO
 - Parton shower: k_T ordered (MEPS) Uses DGLAP
 - RAPGAP
 - Parton shower: k_T ordered (MEPS) Uses DGLAP
 - Direct γ interactions similar to LEPTO
 - Includes resolved γ interactions
 - ARIADNE
 - Parton shower: Color Dipole Model (CDM) BFKL like
 - CASCADE
 - Based on CCFM
 - Set1: k₁^{cut} = 1.33 GeV
 - Set2: k_{\perp}^{cut} = 1.88 GeV and non-singular terms in spliting function included
 - All models use Lung String Model for Hadronization
- NLO QCD Calculations
 - DISENT
 - Fixed order $\alpha_{\rm s}{}^2$

Inclusive Forward Jet Production

- DISENT NLO Calculations and RAPGAP (DGLAP) with only direct γ below data
 - Disagreement at low x
- RAPGAP resolved γ model improves agreement
 - Still disagreement at low $x \rightarrow$ Hint of BFKL dynamics?
- ARIANDE ("BFKL-like") MC and RAPGAP Direct + Resolved (DGLAP) slightly below forward jet data
- CASCADE (CCFM) MC gives poor description of forward jet data

- ARIADNE ("BFKL") describes forward jet data, LEPTO (DGLAP) does not
- NLO gives better description of forward jet data than in inclusive region
 - Disagreement still present at low x
 - Disagreement between LO and NLO \rightarrow large corrections from higher order terms

•BFKL Forward Phase Space

- ARIADNE ("BFKL") describes forward jet data, LEPTO (DGLAP) does not
 - NLO slightly lower than forward jet data
 - Disagreement between LO and NLO much bigger than in BFKL Phase Space
 - Need for higher order calculations

Forward Jet Production at HERA, Patrick Ryan, Univ. of Wisconsin

Very Forward Jets at HERA Data vs. MC (ZEUS)

Data vs. MC

ZEUS

•Very Forward η region

- $2 < \eta^{\text{Jet}} < 3.5$
 - Previous H1: $\eta^{\text{Jet}} < 2.7$
 - Previous ZEUS: $\eta^{\text{Jet}} < 3.0$
- ARIADNE describes forward jet data
- LEPTO does not describe data
 - Large disagreement at low Q², x
- CASCADE Set 1
 - Does not describe data
- CASCADE Set 2
 - Good description of Q^2 and E_T^{Jet}
 - Reasonable description of x and η

Very Forward Jets at HERA Data vs. NLO (ZEUS)

Data vs. NLO

ZEUS

Very Forward η Region

- 2< η^{Jet} < 3.5
- DISENT NLO
 - Describes forward jets data within theoretical uncertainties
 - Large variation with renormalization scale
 - Suggests need for higher order calculations

Forward Jet with Central Dijets H1 Collaboration

•2 High-E_T central jets in addition to forward jet

- Jets ordered in η : $\eta_{\text{fwd-Jet}} > \eta_{\text{Jet2}} > \eta_{\text{Jet1}} > \eta_{\text{electron}}$
- η separation
 - Between central jets: $\Delta \eta_1 = \eta_{Jet2} \eta_{Jet1}$
 - Between hadronic system & forward jet: $\Delta \eta_2 = \eta_{\text{fwd-Jet}} \eta_{\text{Jet2}}$

•Suppress strong k_T ordering by demanding same p_T cut for 3 Jets

- Selects "BFKL region"
- Δη₁< 1
 - Maximize BFKL phase space
- Δη₁ >1
 - Separation btw central & forward jets smaller → resolved photon region

RAPGAP Direct + Resolved (DGLAP)

- Below data for All $\Delta \eta_1$ and $\Delta \eta_1 < 1$
- Agrees with data only in highest bin of $\Delta \eta_1 > 1$
- LEPTO (BFKL-like)
 - Better agreement for $\Delta \eta_1 < 1$ than $\Delta \eta_1 > 1$
- CASCADE (CCFM)
 - Set 1 does not describe data in any region
 - Set 2 Describes data for $\Delta \eta_1 < 1$ except lowest bin, does not describe for $\Delta \eta_1 > 1$

Forward π⁰ Production at HERA p_T Distributions (H1)

p_{T_π} Cross Section H1 data $d\sigma_{\pi}/dp_{T,\pi}^{*}$ [pb/GeV] M (CASCADE) 10 $2 < Q^2 < 4.5 \text{ GeV}^2$ 10 $4.5 < Q^2 < 15 \text{ GeV}^2$ 1 $\hat{p}_{T,\pi}^{*} > 2.5 \text{ GeV}$ 10 10 $15 < O^2 < 70 \text{ GeV}^2$ 1 3 5 7 8 9 10 * 4 6 15 $p_{T,\pi}$ [GeV]

•Measure π^0 instead of Jets

- No ambiguities from Jet algorithm
- Larger uncertainities from hadronization
- BFKL Region: Particle p_T² ~ Q²

•Cross Section $p_{T\pi}$

- Data falls steeply as $p_{T\pi}$ increases
- RAPGAP Dir+Res describes π^0 data
- RAPGAP Dir only below π^0 data
- ARIADNE describes π⁰ data
- CASCADE
 - Good description at higher Q²
 - Poor description at lower Q²

- RAPGAP Direct + Resolved describe π^0 data well
- RAPGAP Direct only below π⁰ data
- CASCADE describes π⁰ data only at high x and Q²
 - Discrepancies at low x not covered by Forward Jet measurement

•x Cross Section with $p_{T\pi} > 3.5 \text{ GeV}$

- Cross Sections 2-4 times lower
- NLO calculation describes data

Forward Jet Production at HERA, Patrick Ryan, Univ. of Wisconsin

Forward Jet Summary

- BFKL Region Selected
 - Forward Jets with Jet $p_T^2 \sim Q^2$
 - Forward π^0 with Particle $p_T^2 \sim Q^2$
 - Forward Jet + central dijets with η separations
- Summary of Agreement between Data and Predictions
 - MC which describe data
 - ARIADNE (BFKL-like)
 - RAPGAP (DGLAP) Direct + Resolved (except fwd+dijet)
 - MC which do not describe data
 - LEPTO (DGLAP)
 - RAPGAP (DGLAP) Direct only
 - CASCADE (CCFM)
 - NLO gives good description of data
 - Higher order calculations needed to improve agreement
- Conclusions
 - DGLAP works everywhere except forward + central dijets
 - Can improve MC agreement with data with any or all of
 - Direct and resolved contributions of DGLAP MC
 - BFKL-like MC
 - NLO