International Europhysics Conference on High Energy Physics Lisboa, Portugal, July 21st – 27th, 2005

Charmed pentaquark searches at HERA

Representing the H1 and ZEUS collaborations

<u>OUTLINE:</u>

Introduction Searches for the charmed pentaquark in D^*p decay mode Details of the H1 signal Summary

Charm pentaquark Θ_{c}^{0}

Search for the charm pentaquark was inspired by the observation of the strange pentaquark with the quark content ($uudd\overline{s}$). The existence of a strange pentaquark implies that a heavy pentaquarks, with the quark content ($uudd\overline{c}$), could also exist.

<u>Several Theoretical Predictions for pentaquark with the charm quark</u>: Jaffe,Wilzek [hep-ph/0307341]; Wu,Ma [hep-ph/0402244] : $M(\Theta_c^{0}) \approx 2700 (< (M(p) + M(D^{-})))$ - cannot decay to D-mesons

hence weak decay to $\Theta^+\pi^-$

Karliner, Lipkin [hep-ph/0307343)]:

 $M(\Theta_{c}^{0}) = 2985 \pm 50 \text{ MeV}$ and width ~ 21 MeV

Cheung [hep-ph/0308176] :

 $M(\Theta_{c}^{0}) = 2938 - 2997$ MeV and the dominant decay modes $D^{-}p^{+}$ and $D^{0}n$

If mass of the charm pentaquark > $M(D^{*\pm}) + M(p)$ (=2948 MeV) Θ_{c}^{0} can decay to $D^{*\pm}p$

Dmitri Ozerov

M(D*p) spectra in DIS

<u>H1 observed narrow resonance at a mass $3099 \pm 3(\text{stat}) \pm 5(\text{syst})$ MeV</u> Width is $12 \pm 3(\text{stat})$ MeV (consistent with the exp. resolution 7 ± 2 MeV) The signal consists of 50.6 ± 11.2 events Background fluctuation probability : $4x10^{-8}$ (Poisson) (5.4 σ Gauss)

ZEUS : no evidence for a signal at 3100 MeV

Entries per 10 MeV

All events from the D*p distribution were visually scanned and no anomalies are observed in the events or the candidate tracks (no multiple hypothesis)

Different kinematic and reflection hypothesis were tested : D*p(3100) resonance hypothesis survived.

Signal at 3.1 GeV is present also in the photoproduction $Q^2 < 1 \text{ GeV}^2$ sample. (~4900 D* mesons)

Dmitri Ozerov

ZEUS : add D*'s with the decay channel of $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+ \pi^-) \pi_s^+$ No hint for the signal observed by H1 at 3099 MeV

Dmitri Ozerov

Acceptance corrected $R_{cor}(D^*p(3100)/D^*)$

H1 : kinematic region $1 < Q^2 < 100 \text{ GeV}^2 \& 0.05 < y < 0.7$ in the visible D*p range : $P_T(D^*p) > 1.5 \text{ GeV}, -1.5 < \eta(D^*p) < 1.0$ and visible D* range : $P_T(D^*p) > 1.5 \text{ GeV}, -1.5 < \eta(D^*p) < 1.0, z(D^*) > 0.2$

 $R_{cor}(D^*p(3100)/D^*) = (1.59 \pm 0.33^{+0.33}_{-0.45})\%$ (preliminary)

ZEUS : kinematic region $Q^2 > 1 \text{ GeV}^2 \& y < 0.95$ phase space : $P_T(D^*) > 1.35 \text{ GeV}, -1.6 < \eta(D^*) < 1.6, P_T(D^*)/E_T^{\Theta > 10} > 0.2$ 95% C.L. upper limit: $R_{_{COT}}(D^*p(3100)/D^*) < 0.59 \% (< 0.51 \% \text{ for both } D^0\text{-decay channels})$

ZEUS: full kinematic region (DIS + photoproduction) 95% C.L. upper limit: $R_{cor}(D^*p(3100)/D^*) < 0.47 \%$ (< 0.37 % for both D⁰-decay channels)

$\sigma(D^*p(3100))/\sigma(D^*)$ vs. event kinematical variables

MC used for the acceptance correction and comparison: RAPGAP 3.1 MC, mimic $D^*p(3100)$ by the appropriate modification of mass and decay of $D_1(2420)$ and $D_2(2460)$ (isotropic decay)

The model prediction is normalised to the observed $\sigma(D^*p(3100))/\sigma(D^*)$ ratio $2.48 \pm 0.52^{+0.85}_{-0.64}$ %

 $\sigma(D^*p(3100))/\sigma(D^*)$ as a function of D^* variables

Production of D^*p is suppressed for central η both in the lab and γp frames

D^{*} from the decay of D^{*}p are significantly softer in P_T(D^{*}) and $z(D^*)$ compared to the inclusive D^{*}

Statistical errors only on the plots

$\sigma(D^*p(3100))$ as a function of (D^*p) variables

Features of D^{*}p production:

- Suppressed for central η in the lab and γp frames
- MC describes well P_{T} and z distributions

Statistical errors only on the plots

Fragmentation functions of $D^*p(3100)$ and D^*

Particles in the $D^*(D^*p)$ hemisphere are used to estimate (E-p₂) of the charm quark.

$$x_{obs}(D^*p, D^*) = \frac{(E - p_z)_{lab}(D^*p, D^*)}{\sum_{hemisphere} (E - p_z)_{lab}}$$

 $x_{_{Obs}}$ can be compared to the fragmentation variable in $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$

Fragmentation functions of $D^*p(3100)$ and D^*

For comparison, x_{obs} distributions for the inclusive D* :

Statistical errors only on the plots

Summary

- H1 and ZEUS performed a search for a D^{*}p resonance.
- → H1 observed a narrow resonance at 3099 MeV

 $R_{cor}(D^*p(3100)/D^*) = 1.59 \pm 0.33^{+0.33}_{-0.45}$ % (H1 preliminary)

→ ZEUS does not see this signal

 $R_{cor}(D^*p(3100)/D^*) < 0.59\%$ 95 C.L. (ZEUS)

- H1 presented studies of the phase space for the observed signal:
- Suppression of $D^*p(3100)$ at central rapidity in lab. / γp frames is found
- D^{*}p(3100) fragmentation is hard and similar to the charmed hadrons from c-quark fragmentation
- D^* from the $D^*p(3100)$ decay are significantly softer than inclusive D^*

Higher statistics HERA II data will help to resolve current discrepancy between the H1 and ZEUS results.