Dijets at low x and low Q²

Carsten Niebuhr DESY

RHIS

for the H1 Collaboration

EPS2005, Lisbon Portugal

Deep Inelastic Scattering at HERA

EPS 2005, Lisbon: Dijets at low x and low Q^2

Boson Gluon Fusion

- Boson Gluon Fusion dominates at low x
- Dijet production provides sensitivity to parton distribution & evolution
- Data presented here are at medium Q²
 - $2 < Q^2 < 100 \text{ GeV}^2$
 - scattered electron detected in backward calorimeter (SPACAL)

QCD Compton

Parton Dynamics in DIS

Different parton evolution schemes exist:

- DGLAP
 - evolution in Q² or k_T^2
 - at small x strong k_T ordering: $\mathbf{k_{T,1}^2} \ll ... \ll \mathbf{k_{T,i}^2} \ll ... \ll \mathbf{Q^2}$
 - neglects log(1/x) terms, expected to break down at very low x

BFKL

- evolution in x => appropriate at small x
- no k_T ordering, instead: $\mathbf{x_1} \ll ... \ll \mathbf{x_i} \ll ... \ll \mathbf{x}$
- successful for forward jets and forward particle production

CCFM

- no k_T ordering, instead angular ordering (gluon coherence effects)
 - for small x: CCFM → BFKL
 - for large x: CCFM → DGLAP
- MC implementation: CASCADE
- use of unintegrated PDFs

LO and NLO Monte Carlo Programs based on DGLAP

EPS 2005, Lisbon: Dijets at low x and low Q^2

Triple Differential Dijet Cross Section

Data / NLO for Triple Differential Dijet Cross Section

- Effects from low-x dynamics expected to be largest at small $E^*_{T,max}$ and $|\Delta \eta^*|$
- Even in these regions observe good agreement between data and NLO calculations
- To find deviations from DGLAP have to look into more details of final state properties

Dijet Azimuthal Separation

- In LO DGLAP jets are in a back-to-back azimuthal configuration $(k_T \ 0)$
- Deviations can be due to:
 - higher orders in conventional QCD (NLO, NNLO, ...) and/or
 - alternative parton evolution leading to non-zero k_T
- Study fraction of dijet events for which $\Delta \phi^*$ is significantly smaller than π :

$$S(\alpha) = \frac{\int_0^{\alpha} N_{Dijet}(\Delta\phi^*, x, Q^2) d\Delta\phi^*}{\int_0^{\pi} N_{Dijet}(\Delta\phi^*, x, Q^2) d\Delta\phi^*}$$

- choose
$$\alpha=2\pi/3$$

Compare with LO and NLO Calculations

$$S = \frac{\int_0^{2\pi/3} N_{Dijet}(\Delta\phi^*, x, Q^2) d\Delta\phi^*}{\int_0^{\pi} N_{Dijet}(\Delta\phi^*, x, Q^2) d\Delta\phi^*}$$

- Data show significant increase towards low x
- Study effect of higher orders:
 - LO predictions $[O(\alpha_s)]$
 - at most 3 jets in final state
 - completely fails to describe data
 - NLO calculations [up to $O(\alpha_s^3)$]
 - 3 or 4 jets in final state
 - reasonable description at large x, Q²
 - but still too low at small x, Q²

Influence of Resolved Photon Contribution

- Resolved photon contribution emulates non-k_T-ordered parton emissions
- Description improves but still falls below the data at small x and Q²

carsten.niebuhr@desy.de

Alternative Parton Evolutions

- CASCADE (CCFM evolution) using unintegrated PDFs decribes data well
- Data provide sensitivity to choice of unintegrated PDF
 - J2003 much better than JS2001
 - JS2001 only singular terms
 - J2003 full splitting function [set 2 shown]
- ARIADNE (Color Dipole Model: 'BFKL like') also describes the data at low x, Q²
 - but systematically too low at larger Q²

EPS 2005, Lisbon: Dijets at low x and low Q^2

Comparison with NLO Calculations $d^3\sigma_{2jet}/(dQ^2 dE_T^* dx_{\gamma}^{jets})$

H1 (57 pb ⁻¹ , 1999-2000)
$\sqrt{s} = 318 \text{ GeV}$
$2 < Q^2 < 80 \text{ GeV}^2$
0.1 < y < 0.85
E _{T1} > 7 GeV
$E_{T2}^* > 5 \text{ GeV}$
$-2.5 < \eta^*_{1,2} < 0$
longitudinally invariant k_t jet algorithm, $\gamma^* p$ CMS
Eur. Phys. J. C37 (2004) 141-159

Estimate fraction of photon four momentum carried by parton in hard interaction:

$$x_{\gamma}^{jets} = \sum_{j=1,2} (E_j^* - p_{z,j}^*) / \sum_{hadrons} (E^* - p_z^*)$$

- direct part (
$$x^{jets}_{v} > 0.75$$
) well described

- resolved fraction ($x_{v}^{\text{jets}} < 0.75$) increases at smaller Q²
 - data significantly above NLO calculations when using direct photon only
 - excess decreases with increasing Q^2

JETVIP including γ^*_{T} improves description but excess for x^{jets} , < 0.75 remains

Comparison with LO Monte Carlo including Parton Showers

- Inclusion of QCD parton showers in HERWIG LO Monte Carlo significantly improves description
 - Hadronisation corrections small
- Some deficit remains in region of high x^{jets}_γ
- Best agreement reached when transversly AND longitudinally polarised resolved virtual photons are included (see next slide)

Comparison with Alternative Parton Evolution Schemes

- HERWIG reasonably describes data if transversly and longitudinally polarised resolved photons are included
 - Contribution from resolved photon ladder can be viewed as deviation from k_T ordering

- CASCADE based on CCFM
 - non- k_T -ordered parton emissions
 - although no explicit virtual photon structure is included can generate sizable contribution at $x_{\gamma}^{\text{jets}} < 0.75$
 - main trends of data described
 - large sensitivity to choice of unintegrated PDF [J2003 set 1 shown]

Summary

- Dijet production very sensitive tool to study properties of parton distributions and evolution at small x
- HERA data at medium Q² [2<Q²<100 GeV²] used to measure triple differential cross sections
 - Eur. Phys. J. C33 (2004) 477
 - Eur. Phys. J. C37 (2004) 14
- Established clear evidence for effects that go beyond the fixed-order NLO QCD calculations
 - NLO calculations do not provide satisfactory agreement at small Q^2 , E_T , x_v
- LO Monte Carlo predictions give reasonable description if
 - supplemented with parton showers
 - transversly and longitudinally polarised resolved photon contribution are included
- CASCADE (based on CCFM) qualitatively describes main features of data

Backup Slides

Comparison with NLOJET++

17

EPS 2005, Lisbon: Dijets at low x and low Q²

- NLOJET++ results in 3-jet mode significantly closer to data than those of 2-jet mode
 - have to cut out region $x_{\gamma} \sim 1$
 - no resolved photon
- largest corrections at small x_{γ} and Q^2
- remaining gap between data and NLOJET++ 3-jet also most pronounced for small x_v and low Q²
 - there is need for further higher order QCD corrections

Triple differential cross section: $d^3 \sigma_{2jet} / (dQ^2 dx_{\gamma}^{jets} dy)$

EPS 2005, Lisbon: Dijets at low x and low Q²

EPS 2005, Lisbon: Dijets at low x and low Q²