

Jet Correlations at HERA

Marcos Jiménez Universidad Autónoma de Madrid On behalf of the ZEUS collaboration

- Jet production in ep collisions at HERA provides a testing ground for QCD
- The biggest contribution to the production of jets comes from photoproduction($Q^2 \sim 0$)
- At leading order, two processes contribute to the dijet photoproduction cross section:

 $\sigma_{jet} \propto \sum_i \sum_j f_{\gamma/e} \otimes f_{i/\gamma} \otimes f_{j/p} \hat{\sigma} ~~ x_\gamma^{OB}$

Interjet energy flow in photoproduction

• Events with two jets of high E_T separated by a large rapidity gap are ideal to study colour-singlet exchange with a large momentum transfer

gap-fraction $\equiv f(\Delta\eta) = rac{d\sigma_{gap}/d\Delta\eta}{d\sigma/d\Delta\eta}$

• DATA SELECTION

 $L=38.6\pm0.6~pb^{-1}$ (ZEUS 96-97 running period)

• Two-jet events are selected in the kinematic region:

 $E_T^{jet1} \geq 6~{ extsf{GeV}} \ |\eta^{jet1,2}| < 2.4 \ 2.5 < \Delta\eta < 4$

$$E_T^{jet2} \geq 5~{ t GeV} \ |rac{1}{2}(\eta^{jet1}+\eta^{jet2})| < .75$$

Energy flow between jets

$$\begin{split} E_{T}^{GAP} &= \sum_{i>2} E_{T}^{jeti} \\ \eta^{jeti} \epsilon(\eta^{jet}_{forward}, \eta^{jet}_{backward}) \end{split}$$

Example of rap-gap event

Monte Carlo Models

Without colour-singlet exchange

PYTHIA 6.1 and HERWIG 6.1

- tuned to the E_T^{GAP} distribution in the high E_T^{GAP} region
- direct and resolved combined by fitting the x_{γ}^{OBS} distributions to the data
- resolved contains multiparticle interactions

With colour-singlet exchange

- **HERWIG-BFKL** \rightarrow uses **BFKL** pomeron as exchange object
- **PYTHIA-High-t** $\gamma \longrightarrow$ **uses high-t photon as exchange object** (purpose is simply to match the data)

ullet Comparison of measured $d\sigma/dE_T^{GAP}$ with MC models

• Differential cross sections in $\Delta\eta$

 \bullet The contribution from the colour-singlet is consistent with the data at high $\Delta\eta$

• Gap fraction for different

 E_T^{GAP} thresholds:

• MC model with colour singlet exchange:

 \rightarrow provides excess to the exponential as seen in the data

- Three jet events arising from hard interactions at HERA allow the study of the underlying gauge structure of QCD
- The dynamics of a gauge theory such as QCD is determined by the color factors C_F, C_A , and T_F

• At LO, the 3-jet cross section can be expressed in terms of the colour factors

 $\sigma_{ep \to 3jets} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$

- Angular correlation variables among jets can be defined in PHP and DIS
 - → sensitive to the contributions from the different colour configurations

Variables used to study the angular correlations in 3-jet events:

 $\rightarrow heta_H$: the angle between the planes determined by the highest- E_T^{jet} jet and the beam, and the two lowest- E_T^{jet} jets $\rightarrow lpha_{23}$: the angle between the two lowest- E_T^{jet} jets

 $\rightarrow \cos(\beta_{KSW}) : \cos\left[\frac{1}{2}\left(\angle[(\vec{p}_1 \times \vec{p}_3), (\vec{p}_2 \times \vec{p}_B)] + \angle[(\vec{p}_1 \times \vec{p}_B), (\vec{p}_2 \times \vec{p}_3)]\right)\right]$

 $\rightarrow \eta_{\max}^{\text{jet}}$: the η of the most forward jet in the Breit frame (only measured in DIS)

Photoproduction sample

• Data collected with the ZEUS detector during 95-00 corresponding to a luminosity of $127 p b^{-1}$

$$\begin{array}{ll} \textbf{3 jets of } E_T > 14 \ \textbf{GeV} & x_{\gamma}^{OBS} > 0.7 & \rightarrow x_{\gamma}^{OBS} = \sum_{i=1}^{3} \frac{E_{T,i}e^{-\eta_i}}{2yE_e} \\ \\ -1 < \eta < 2.5 & Q^2 < 1 \ \textbf{GeV}^2 & \rightarrow 2233 \ \textbf{three-jet events} \end{array}$$

DIS sample

- Data collected during 98-00 with a luminosity of 81.7 pb^{-1}
 - $\begin{array}{ll} \mbox{3 jets of: } E_{T,}^{\rm jet1} > 8 \ \mbox{GeV} & E_{T,{\rm B}}^{\rm jet2,3} > 5 \ \mbox{GeV} \\ -2 < \eta^{\rm jet} < 1.5 & Q^2 > 125 \ \mbox{GeV}^2 \end{array}$

 $|cos\gamma_h| < 0.65$

 $\rightarrow 1015$ three-jet events

Photoproduction: data vs MC models

• θ_H , α_{23} , and β_{KSW} normalised cross sections compared with Pythia 6.1 and Herwig 6.1:

 \rightarrow MC models also give a good description in DIS

• Fixed-order $\mathcal{O}(\alpha \alpha_s^2)$ have been made for each color combination :

Photoproduction using the program by Klasen, Kleinwort and Kramer

- \rightarrow pPDFs: MRST99 set
- $\rightarrow \mathsf{pPDFs:} \ \mathsf{MRST99} \ \mathsf{set}$ $\rightarrow \mu_R = \mu_F = E_T^{max}$ predicted relative contributions (SU(3)) 13% σ_A , 10% σ_B , 45% σ_C , 32% σ_D

 - **DIS** using the program DISENT
 - \rightarrow pPDFs: CTEQ6M1 set

$$ightarrow \mu_R = \mu_F = Q$$

• predicted relative contributions (SU(3)):

 $23\% \sigma_A, 13\% \sigma_B, 39\% \sigma_C, 25\% \sigma_D$

 $\cos(\beta_{KSW})$ angle in DIS

Photoproduction

• θ_H , α_{23} , and β_{KSW} normalised cross sections compared with the colour components:

- $ightarrow \sigma_B$ shape is very different
- \rightarrow Similar sensitivity seen in variables for DIS

Photoproduction

• θ_H , α_{23} , and β_{KSW} normalised cross sections compared with the predictions of different symmetry groups:

 \rightarrow The predictions of $C_F = 0$ and SU(N) , large N, are disfavoured by data

 \rightarrow Reasonable description of data by SU(3)

Normalised cross sections in DIS

- Measurements of rapidity gaps in inclusive dijet events in PHP have been made using 96-97 ZEUS data
- \rightarrow MC models with color-singlet contribution are consistent with measured $d\sigma/dE_T^{GAP}$, and $d\sigma/d\Delta\eta$ distributions
- \rightarrow For $f(\Delta \eta)$, the color-singlet contribution gives an excess over exponential decay consistent with data
- Angular correlations in 3-jet events in PHP and NC DIS have been measured using 95-00 ZEUS data
- → Differences between SU(3) and U(1)³ fixed order calculations are found in $cos(\beta_{KSW})$ and Θ_H , but still limited by data stats
- \rightarrow The data clearly disfavour calculations where SU(N), for large N, or $C_F = 0$ have been assumed
- → All the three-jet angular correlation measurements are consistent with the admixture of colour configurations as predicted by SU(3)

DIS θ_H , α_{23} , β_{KSW} and η_{max}^{jet} normalised cross sections compared with the colour components:

DIS: data vs MC models

• θ_H , α_{23} , β_{KSW} and η_{max}^{jet} normalised cross sections vs Color Dipole Model (CDM) and Matrix-element + Parton-shower (MEPS) of LEPTO:

 \rightarrow The predictions of MEPS give a good description of the data

 \rightarrow The predictions of CDM give a somewhat poorer description