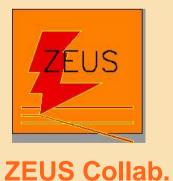
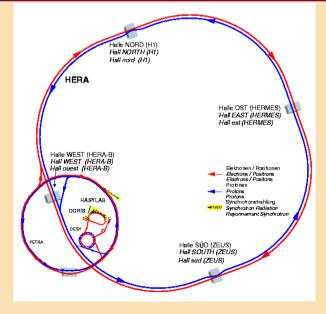
HEP2005 International Europhysics Conference on High Energy Physics

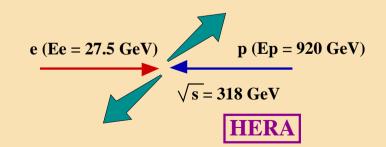
Lisboa, Portugal

July $21^{st} - 27^{th}$, 2005

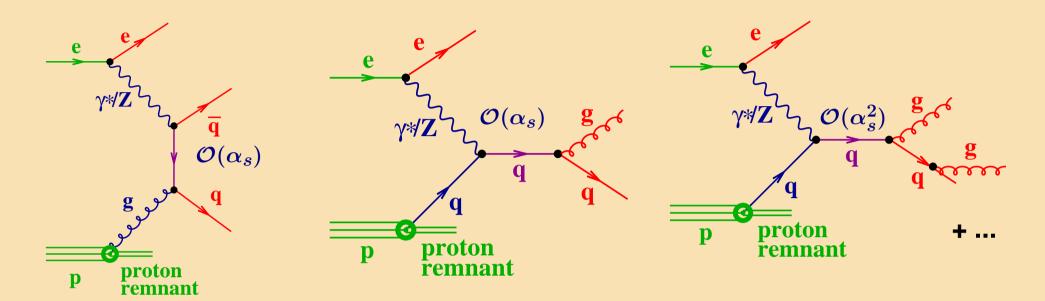


Event shapes and subjet distributions at HERA

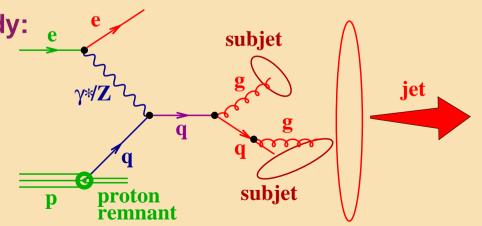

Claudia Glasman Universidad Autónoma de Madrid



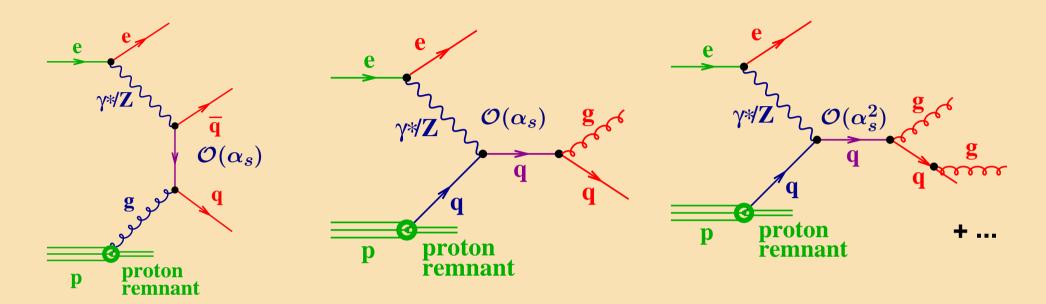
from


at

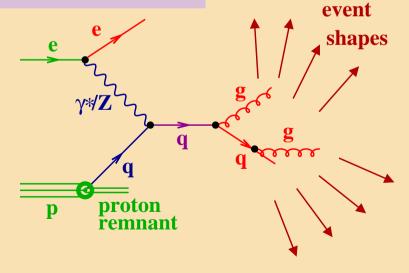
HEP 2005


The hadronic final state in NC DIS

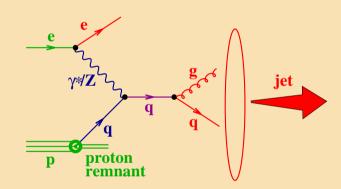
Observable = $\sum_a f_a(x, \mu_F) \otimes$ Matrix Element


The HFS in NC DIS can also be used to study:

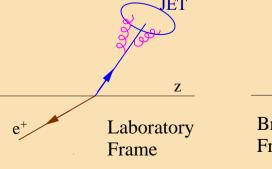
- → pattern of parton radiation: subjets
 - → calculable in pQCD
 - → stringent test of pQCD

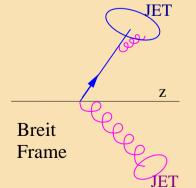

HEP 2005

The hadronic final state in NC DIS


Observable = $\sum_a f_a(x,\mu_F) \otimes$ Matrix Element

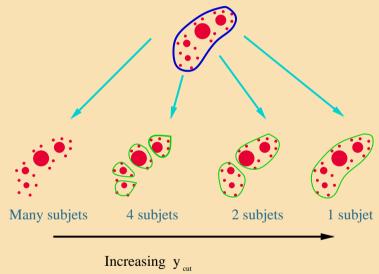
- The HFS in NC DIS can also be used to study:
 - → hadronisation process: event shapes
 - → non-perturbative effect
 - → test of power-correction model




Internal structure of jets

- The investigation of the internal structure of jets gives insight into the transition between a parton produced in a hard process and the experimentally observable jet of hadrons
- ullet At sufficiently high $E_T^{
 m jet}$, where fragmentation effects become negligible, the jet structure can be calculated perturbatively
- The lowest non-trivial-order contribution to the jet substructure is given by $\mathcal{O}(\alpha_s)$ calculations for NC DIS in LAB frame

 NLO calculations of jet substructure can be obtained in the LAB frame since it is possible to have three partons inside one jet

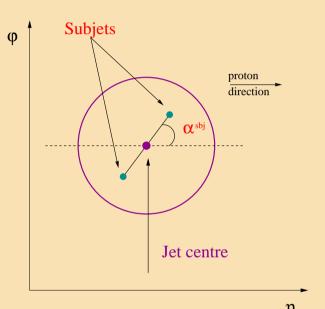


Internal structure of jets: subjets

- The internal structure of the jets can be studied by using the subjet topology
- ullet Subjets are resolved within a jet by reapplying the k_T cluster algorithm on all the particles belonging to the jet until for every pair of particles the distance between clusters is above

$$d_{ ext{cut}} = y_{ ext{cut}} \cdot (E_T^{ ext{jet}})^2$$

- All remaining clusters are called subjets
- The subjets multiplicity depends upon the value chosen for the resolution parameter y_{cut}

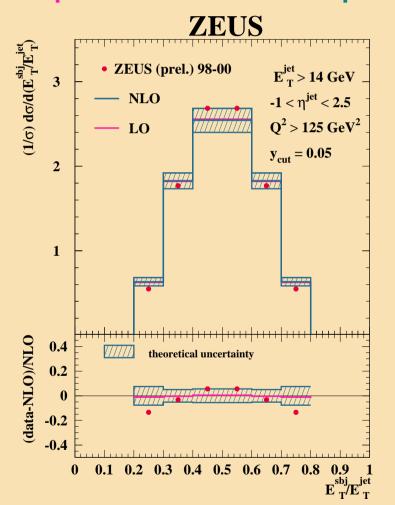

- The study of subjets:
 - is sensitive to the pattern of parton radiation

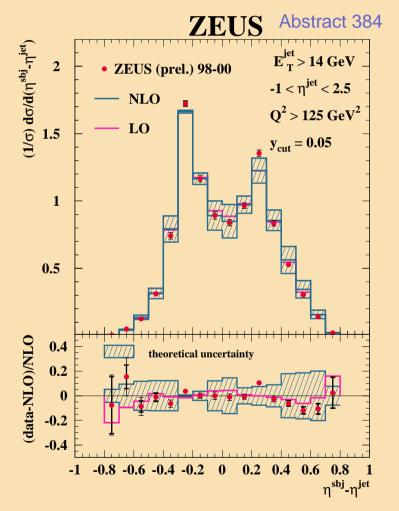
Subjet distributions

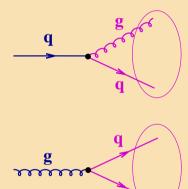
• The pattern of QCD radiation from a primary parton has been studied by measuring normalised cross sections as a function of the subjet observables:

$$E_T^{
m sbj}/E_T^{
m jet}$$
, $\eta^{
m sbj}$ $\eta^{
m jet}$, $|\phi^{
m sbj}$ $\phi^{
m jet}|$ and $lpha^{
m sbj}$

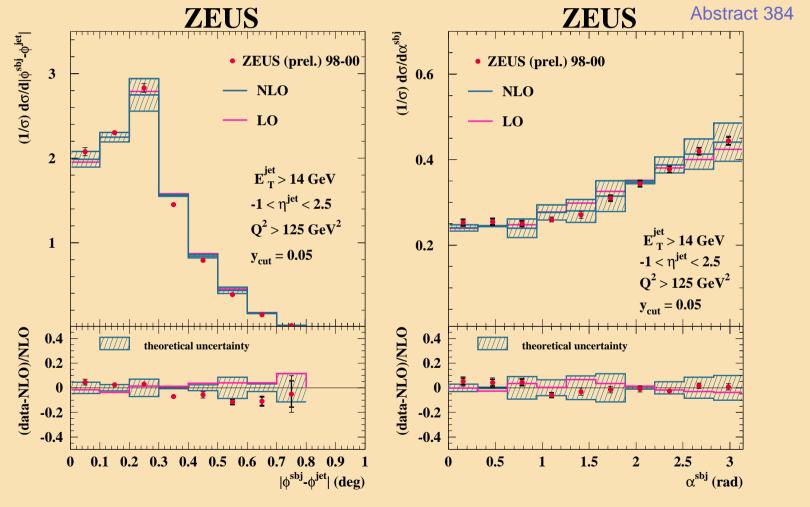
- Measurements of the normalised cross sections were done for $Q^2>125~{\rm GeV}^2$:
 - the k_T cluster algorithm was used in the LAB frame and at least one jet of $E_T^{
 m jet}>14$ GeV and $-1<\eta^{
 m jet}<2.5$ was required
 - Final sample: jets that have two subjets for $y_{
 m cut}=0.05$




- Fixed-order QCD predictions were calculated at NLO using DISENT with:
 - pPDFs: MRST99 sets
 - calculations are at $\mathcal{O}(lpha_s^2)$
 - $lpha_s$ was calculated at two loops with $lpha_s(M_Z)=0.1175$
 - renormalisation and factorisation scales: $\mu_R=\mu_F=Q$
 - calculations were corrected to hadron level to compare with the data


Measurements of subjet distributions

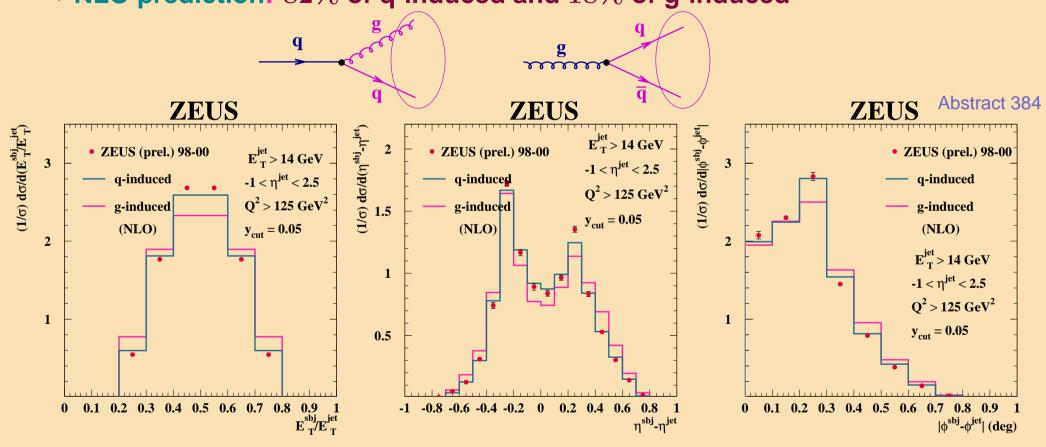
ullet $E_T^{
m sbj}/E_T^{
m jet}$ and $\eta^{
m sbj}\!-\!\eta^{
m jet}$ measured normalised cross sections for $E_T^{
m jet}\!>\!14$ GeV compared with fixed-order pQCD calculations:



ightarrow The NLO predictions describe the data within $\pm 10\%$

Measurements of subjet distributions

ullet $|\phi^{
m sbj} - \phi^{
m jet}|$ and $lpha^{
m sbj}$ measured normalised cross sections for $E_T^{
m jet} > 14$ GeV compared with fixed-order pQCD calculations:



ightarrow The NLO predictions describe the data within $\pm 10\%$

Measurements of subjet distributions

• $E_T^{
m sbj}/E_T^{
m jet}$, $\eta^{
m sbj}-\eta^{
m jet}$ and $|\phi^{
m sbj}-\phi^{
m jet}|$ measured normalised cross sections for $E_T^{
m jet}>14$ GeV compared with quark- and gluon-induced calculations: \to NLO prediction: 82% of q-induced and 18% of g-induced

→ The data are well described by the calculations for jets arising from the splitting of a quark into a quark-gluon pair

Event shapes

- Event-shape variables are particularly sensitive to the details of the nonperturbative effect of hadronisation
- In this type of analysis, the data are compared to a model prediction which consists of a combination of NLO QCD calculations and the expectations of the power corrections, characterised by an effective coupling $\bar{\alpha}_0$:

$$F = F_{\text{perturbative}} + F_{\text{power correction}}$$

where F is an event-shape mean or distribution (NLO + matched NLL)

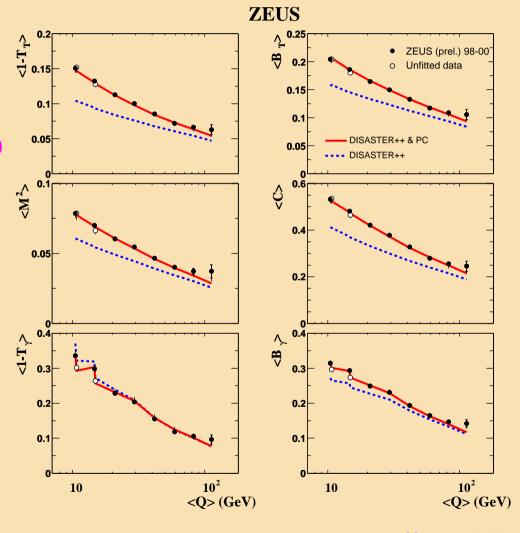
Event-shape variables:

Axis-dependent variables: thrust or broadening wrt thrust or photon axis

Thrust:
$$T=rac{\sum_{i}|ec{p_{i}}\cdot\hat{n}|}{\sum_{i}|ec{p_{i}}|}$$
 Broadening: $B=rac{\sum_{i}|ec{p_{i}} imes\hat{n}|}{\sum_{i}|ec{p_{i}}|}$

Axis-independent variables:

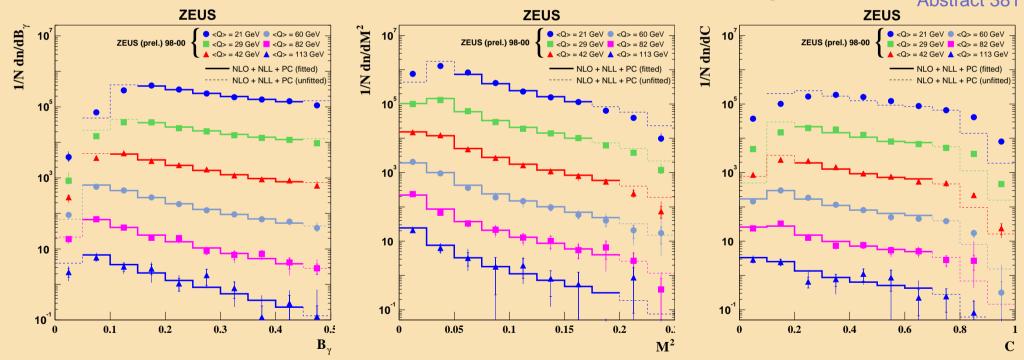
C parameter:
$$C = \frac{3\sum_{ij}|\vec{p}_i||\vec{p}_j|\sin^2(\theta_{ij})}{2(\sum_i|\vec{p}_i|)^2}$$
 Jet mass: $M^2 = \frac{(\sum_i E_i)^2 - |\sum_i \vec{p}_i|^2}{(2\sum_i E_i)^2}$


A suitable frame in which to study event shapes at HERA is the Breit frame
 → the separation between the current jet and the proton remnant is maximal

Event-shape means

• Measurement of event-shape means for $80 < Q^2 < 2 \cdot 10^4$ GeV 2 and 0.0024 < x < 0.6:

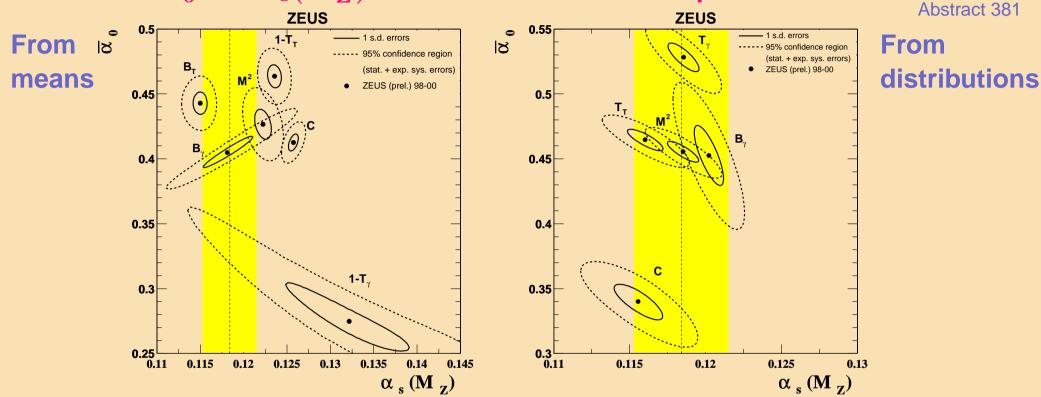
- Fitting procedure:
 - → NLO + PC predictions fitted to measured event-shape means
 - \rightarrow fitting parameters: $\alpha_s(M_Z)$ and $\bar{\alpha}_0$
 - → Hessian method (including statistical and systematic uncertainties of data)
 - → each observable fitted separately
- Calculations:
 - → DISASTER++ (CTEQ4M or MRST99 pPDFs) for fixed-order predictions
- ightarrow Reasonable fits are obtained for all event-shape observables within the Q^2 range studied



Abstract 381

Event-shape differential distributions

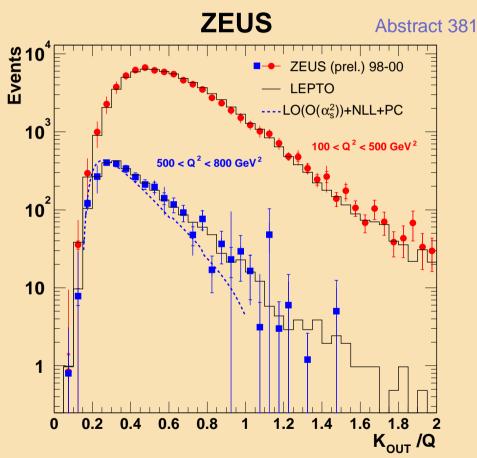
- ullet Event-shape distributions for 9 < Q < 141 GeV and 0.0024 < x < 0.6:
- Two-parameter ($\alpha_s, \bar{\alpha}_0$) fit using NLO + NLL + PC:
 - range of fit restricted to region where predictions of PC are valid
 - each observable fitted separately
 - DISRESUM used for PC and matched NLL resummation predictions



→ Reasonable fits are obtained for all event-shape observables within the restricted ranges studied

Test of the power-correction model

ullet Extracted $ar{lpha}_0$ and $lpha_s(M_Z)$ values for each event-shape observable:



- ightharpoonup Universal non-perturbative parameter $ar{lpha}_0=0.45\pm10\%$, except for T_γ and C parameter (distributions)
- ightarrow Extracted value of $lpha_s(M_Z)$ consistent for all observables to within 5% (means)
- → The dispersion of the extracted values could be due to higher-order terms
- ightarrow Extracted values of $lpha_s(M_Z)$ consistent with world average (distributions)

Event shapes with jets

- ullet Out-of-plane momentum: $K_{ ext{out}} = \sum_i |\overrightarrow{p_i^{ ext{out}}}|$
- Energy flow out of event plane defined by proton direction and thrust major axis
 - → sensitive to perturbative and nonperturbative contributions
 - ightarrow lowest non-trivial contribution to $K_{
 m out}$ from non-perturbative effects or NLO pQCD dijet contributions
- ullet Measurement of $K_{
 m out}/Q$ for $100\!<\!Q^2\!<\!500$ GeV 2 and $500\!<\!Q^2\!<\!800$ GeV 2 :
- → Data well described by LEPTO and ARIADNE models
- ightarrow First comparison of LO+NLL+PC (using $lpha_s=0.118$ and $ar{lpha}_0=0.52$) with data in high- Q^2 range only
 - \rightarrow more precise test of the model needs $\mathcal{O}(\alpha_s^3)$ calculations

Conclusions

- Subjet normalised cross sections have been measured in NC DIS in the LAB frame
- → Reasonable description of the data by NLO pQCD calculations:
 - the pattern of QCD radiation as implemented in the NLO calculations reproduces the behaviour of the data
 - the data are well described by the calculations for jets arising from the splitting of a quark into a quark-gluon pair
- Event-shape means and distributions have been measured in NC DIS in the Breit frame
- → NLO (+ NLL) + PC calculations give a reasonable description of the means (distributions):
 - extracted values of PC parameter $\bar{\alpha}_0$ are consistent within 10% (except T_γ , C)
 - extracted values of the strong coupling contant $lpha_s(M_Z)$ are consistent with the world average (except T_γ)
 - more theoretical input is needed to fully exploit the potential of these measurements