Open Charm production in DIS at HERA

Sergey Fourletov (University of Toronto, Canada) on behalf of the ZEUS Collaboration

European Physical Society HEP2005 International Europhysics Conference on High Energy Physics EPS (July 21st-27th 2005) in Lisboa, Portugal

OUTLINE

- Introduction
 - The ZEUS detector
 - ZEUS kinematic region
- D^* in DIS at $Q^2 > 1 \text{ GeV}^2$
 - Cross sections HERA-I 98-00
 - New HERA-II data 2003-2005
- D* in Photoproduction at $Q^2 \approx 0 \ GeV^2$
 - One plot results HERA-I 98-00
- D^* in DIS at low $Q^2 < 1 \ GeV^2$
 - Cross sections HERA-I 98-00
 - Combined plot
- Summary

ZEUS detector

- HERA is the storage ring which provides collisions between 920 GeV protons and 27.5 GeV electrons or positrons; $\sqrt{s} \approx 318$ GeV.
- ZEUS is multi-purpose detector with main componets: MVD microvertex detector, CTD - central tracking detector, FDT,RTD - forward and rear tracking detector, FCAL,BCAL, RCAL - forward, barrel and rear calorimeter, FMUO,BMUO,RMUO forward, barrel and rear muon detector.

Charm Production at HERA

Charm quarks are produced copiously in $e^{\pm}p$ collisions at HERA and have been studied using $D^{*\pm}$ mesons.

The (x,Q^2) kinematic plan shows the regions reachable for ZEUS:

- 1. DIS $(1.5 < Q^2 < 1000 \text{ GeV}^2)$ region available with ZEUS Uranium Calorimeter (UCAL).
- 2. PHP $(\mathbf{Q}^2\approx \mathbf{0}~\mathbf{GeV}^2)$
- 3. Transition region between PHP and DIS $(0.05 < Q^2 < 0.7 \text{ GeV}^2)$ (BPC-9800) can be reached with the Beam Pipe Calorimeter – detector covers small area near beam pipe, not reachable by UCAL.

D^* in DIS $(1.5 < Q^2 < 1000 \text{ GeV}^2)$

- Recently published HERA-I 98-00 data with 65 $pb^{-1} e^+p$ and 17 $pb^{-1} e^-p$
- The result is consistent with calculation in QCD
- Also, it was observed that $\sigma(e^-p) > \sigma(e^+p)$ for high Q^2 range.
- It was not expected and so the phenomenon was treated as a statistical fluctuation.
- We now have access to more HERA II data : 40 pb⁻¹ e⁺p and 33 pb⁻¹ e⁻p to investigate this difference.

DIS event selection in HERA-II

Kinematic variables:

• $Q_e^2 = 2E_e' E_e (1 + \cos \Theta_e)$

•
$$y_e = \frac{E_e'}{E_e} (1 - \cos \Theta_e)$$

• $\delta = \sum_i E_i (1 - \cos \Theta_i)$

 \mathbf{D}^* candidates:

- $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$
- $\mathbf{p_T}(\pi_s) > 0.12 \ \mathrm{GeV}$
- $\mathbf{p_T}(\mathbf{K}, \pi) > \mathbf{0.4} \ \mathbf{GeV}$
- $40 < \delta < 60 \text{ GeV}$

Kinematic Region:

- $\bullet~5 < Q^2 < 1000~GeV^2$
- $\bullet \ 0.02 < y < 0.7$
- $\bullet \ |\eta(\mathbf{D}^*)| < \mathbf{1.5}$
- $\bullet~1.5 < p_T(D^*) < 15~GeV$

D* Signal in 2003-2005 data

- $\Delta M = M_{D^*} M_{D^0} = M_{K\pi\pi} M_{K\pi}$
- \bullet Background subtraction in window: $0.143 < \Delta M < 0.148~GeV$ $1.8 < M_{D^0} < 1.92~GeV$
- gives $1237.7 \pm 64.2 \ D^*$ for e^+p data

•
$$rate = N_{D^*}/\mathcal{L}$$

- e^+p rate = $30.7 \pm 1.8 \ /pb^{-1}$
- and for e^-p data:
- $1117.8 \pm 60.4 D^*$
- e^-p rate = 33.5 ± 1.8 / pb^{-1}
- Rates are consistent

DIS D* cross section ratio

Results suggest very strongly that observed e^+p/e^-p excess in HERA I at high Q2 was a statistical fluctuation.

Charm in Photoproduction

- ZEUS-9800 data, $\mathcal{L} = 78.7 \text{ pb}^{-1}$
- $D^{*+} \rightarrow D^0 \pi_s^+$ with $D^0 \rightarrow K^- \pi^+$
- Kinematic region:
 - $-130 < W < 285 \ GeV^2$
 - $\ Q^2 < 1 \ GeV^2$

$$-\left|\eta(\mathbf{D}^*)\right|<\mathbf{1.6}$$

$$-1.9 < p_T(D^*) < 20 ~GeV$$

- inelasticity: $\mathbf{z}(\mathbf{D}^{*\pm}) = \mathbf{P} \cdot \mathbf{p}(\mathbf{D}^{*\pm}) / \mathbf{P} \cdot \mathbf{q}$
- The NLO calculation generally good describes the data.
- However, the central NLO predictions systematically underestimate the data

Charm Production in transition $PHP \rightarrow DIS$ region

- Charm production occurs via direct and resolved processes.
- Charm in DIS $(Q^2 > 1.5 \text{ GeV}^2)$ dominated by Boson Gluon Fusion (direct)
- Significant resolved contribution to charm photoproduction ($Q^2 \approx 0 \text{ GeV}^2$)
- It is interesting to investigate the low Q^2 transition region between PHP and DIS.
- \bullet Does NLO QCD model still describe the data ?

Beam Pipe Calorimeter in ZEUS

- Beam Pipe Calorimeter (BPC) the detector for low- Q^2 physics.
- \bullet BPC covers the range 0.045 $\rm GeV^2 < Q^2 < 0.7~GeV^2$
- Energy resolution $\frac{\Delta E}{E} = \frac{17\%}{\sqrt{E}}$
- \bullet Spatial resolution $\sim 1~\mathrm{mm}$

Event Selection

- Data from 98-00 $(\mathcal{L} \approx 82 \mathrm{pb}^{-1})$
- BPC cuts:
 - $\begin{array}{l} \triangleright \ 0.05 < y < 0.85 \\ \\ \triangleright \ 0.05 < Q^2 < 0.7 \ GeV^2 \\ \\ \\ \triangleright \ 35 < E p_z < 65 \ GeV \end{array}$

• D^* cuts:

- ▷ $\mathbf{p_T}(\mathbf{D}^*) > 1.5 \text{ GeV}$ ▷ $|\eta(\mathbf{D}^*)| < 1.5$ ▷ $\mathbf{p_T}(\pi_s) > 0.12 \text{ GeV}$ ▷ $\mathbf{p_T}(\mathbf{K}, \pi) > 0.45 \text{ GeV}$
- Clear D^* signal observed
- Unbinned maximun likelihood fit used for number of D*
- Fit to ΔM signal gives $253 \pm 22 D^*$

Total Cross Section

- Total Number of $D^* = \mathbf{253} \pm \mathbf{22}$
- Luminosity = 82.2 pb^{-1}
- Kinematic range:
 - $\triangleright \mathbf{p_t}(\mathbf{D}^*) > 1.5 \ \mathbf{GeV}$
 - $arphi \ |\eta(\mathbf{D}^*)| < \mathbf{1.5}$
 - $\triangleright \ 0.05 < y < 0.85$
 - $\triangleright ~0.05 < Q^2 < 0.7~GeV^2$
- HERWIG and RAPGAP used for acceptance calculation

Measured cross section:

 $\sigma = 10.1 \pm 1.0 \quad \frac{\pm 1.1}{-0.8} \text{ nb}$

HVQDIS cross section:

$$\sigma = 8.6 \quad \frac{+1.9}{-1.8} \text{ nb}$$

- HVQDIS is NLO pQCD calculation used for comparison with data:
 - \triangleright ZEUS NLO pdf used with: $M_c = 1.35~GeV$
 - \triangleright Renormalization and factorization scale: $\mu^2 = ({\bf Q}^2 + 4 {\bf M}_{\bf c}^2)$
 - \triangleright Peterson fragmentation parameter: $\epsilon = 0.035$
- also varying 3 parameters:

▷ scale:

$$1/4(\mathbf{Q^2}+4\mathbf{M_c^2}) < \mu^2 < 4(\mathbf{Q^2}+4\mathbf{M_c^2})$$

- \triangleright mass of charm quark: $1.2~GeV < M_c < 1.5~GeV$
- ▶ fragmentation: $0.02 < \epsilon < 0.005$

BPC D^* differential cross sections

Comparison BPC D* cross section with D* DIS

NLO pQCD describes charm production in DIS over 4 orders of magnitude in Q^2

Summary

• HERA-II data:

- ▷ no difference observed in D* rate for e^-p and e^+p collisions
- Measured D* Production in new kinematic region:
 - ▷ Measurements of charm in transition region between **DIS** and **PHP**
 - ▷ Extends previous results in DIS to lower Q²
- HVQDIS calculation produces a good description of the measured data:
 - Combined with DIS measurements, see agreement over 4 orders of magnitude in Q² between data and HVQDIS