General Search for New Phenomena and a Search for Magnetic Monopoles at HERA

Ana Dubak University of Montenegro / MPI Munich on behalf of the H1 Collaboration

- General search for new phenomena at HERA
- Direct Search for Magnetic Monopoles

General Search for New Phenomena

HERA e^{\pm} $\xrightarrow{27.6 \text{ GeV}}$ $\xrightarrow{920 \text{ GeV}}$ $\xrightarrow{920 \text{ GeV}}$ $\sqrt{s} = 320 \text{ GeV}$ (till 1998 E_p = 820 GeV $\sqrt{s} = 300 \text{ GeV}$)

- Dedicated searches for new phenomena performed
 - Isolated leptons and multielectrons,
 - Leptoquarks,
 - Flavour changing NC,
 - Lepton flavour violation,
 - Excited fermions,
 - Supersymmetry
- But, have we missed something? \rightarrow General search

General Search Analysis Strategy

- Search for deviations from the SM in a model independent way (don't rely on assumptions concerning the characteristics of a SM extension)
- Select event sample at high Pt
 - Investigate all final state configurations of ep interactions with
 2 particles (electron, muon, jet, photon, neutrino)
 - Common phase space for all particles

 $P_{T} > 20 \text{ GeV}$ 10° < θ < 140°

- Classification of events according to the final state
 e-j, j-j, μ-j, j-v, ..., e-e-j, j-j-j, ...
- Search for deviations dedicated statistical analysis

SM Processes and MC Generation

General Search needs SM predictions for all processes at HERA

neutral current DIS Rapgap

charged current DIS Django

photoproduction Pythia

lepton pair production Grape

W production Epvec

QED Compton Wabgen

Event Yields

HERA I e⁺p ⊥ = 100 pb⁻¹ e⁻p ⊥ = 15 pb⁻¹

- all possible event classes with \geq 2 particles investigated
- in total 23 event classes found to be populated by data
- Overall good agreement with SM
 some deviations

 (already found in dedicated analysis)

Event Yields

- all possible event classes with ≥ 2 particles investigated
- in total 20 event classes found to be populated by data
- Overall good agreement with SM
 Some deviation: see isolated lepton talk

General Search for New Phenomena at HERA and a Search for Magnetic Monopoles, Ana Dubak

Search for Deviations

 Systematic search for deviations in differential (1-dim) distributions

$$M_{all} = \sqrt{\left(\sum_{i} P_{i}\right)^{2}} \qquad \sum P_{T} = \sum_{i} \sqrt{P_{x,i}^{2} + P_{y,i}^{2}}$$

- Statistical algorithm \rightarrow 3 steps
 - regions of most interest in the distribution
 - event class of most interest
 - global significance

Regions of Most Interest

Estimate the significance of deviation in an event class

Find the probability P to observe a deviation with p<p_{min} anywhere in an event class

The event class of most interest is the one with the smallest \hat{P}

.

Systematic Search

HERA I £ = 115 pb⁻¹

 $P_{\rm T}$ and $M_{\rm all}$ distributions examined in all event classes

General Search for New Phenomena at HERA and a Search for Magnetic Monopoles, Ana Dubak

Global Significance

Overall agreement with SM quantified by taking into account the large number of event classes

• Most significant deviation found in μ -j-v

(consistent with observation of dedicated analysis)

No additional deviations found

Search for Magnetic Monopoles at HERA

First search for magnetic monopoles in e⁺p interactions at $\sqrt{s} = 300 \text{ GeV}$

QED coupling for Dirac monopole g_D

 $\alpha_{g} = g_{b}^{2}/4\pi = 34$ $m \quad \alpha_{em} = 1/137$ $intermation energy loss ~10^{3} larger than for min. ionising charged particles in the set of the particles in the set of the$

Binding energy of monopoles stopped in the Al beam pipe expected to be large (Milton et al) \Rightarrow monopoles should remain trapped in the material

Examine the Al beam pipe used in the 1994–1997 running period exposed to integrated luminosity of 62 pb⁻¹

Method of Measurement

- Cut the beam pipe into strips
- Pass each strip through a superconduncting coil coupled to a SQUID sensitive to monopoles of charge ≥ 0.1 g_D

 Trapped monopoles will cause persistent current in the superconducting coil - after complete passage of strip through coil

Results of Measurements

- No magnetic monopole of strength > 0.1 g_D had stopped in the measured strips
- The result is interpreted in terms of limits on the monopole pair production cross section

General Search for New Phenomena at HERA and a Search for Magnetic Monopoles, Ana Dubak

Limits on the Cross Section

General Search for New Phenomena at HERA and a Search for Magnetic

Monopole Mass (GeV);

Summary

- For the first time all event topologies involving isolated electrons, photons, muons, jets and neutrinos studied in a single analysis
- Most significant deviation found in μ j ν (consistent with observation of dedicated analysis)
- No additional deviations found
- The first direct search for magnetic monopoles in e⁺p collisions at HERA at \sqrt{s} of 300 GeV
- No monopole signal observed
- Upper limits on the cross section for pair production of monopoles with charge 1-6g_d and up to a mass of 140 GeV within the context of two models

16

Region of most interest

$$p_{\text{region}} = G_{\text{syst}}(\text{BG}) \otimes P_{\text{Poisson}}(N_{obs} \ge N_{SM}, N_{obs} < N_{SM})$$

- N_{SM} = number of **expected** events in region
- N_{obs} = number of **observed** events in region

$$p = \begin{cases} A \int_{0}^{\infty} db \, G(b; N_{SM}, \delta N_{SM}) \sum_{\substack{i=N_{obs} \\ N_{obs}}}^{\infty} \frac{e^{-b}b^{i}}{i!} & \text{if } N_{obs} \ge N_{SM} \end{cases}$$
$$A \int_{0}^{\infty} db \, G(b; N_{SM}, \delta N_{SM}) \sum_{\substack{i=0 \\ i=0}}^{N_{obs}} \frac{e^{-b}b^{i}}{i!} & \text{if } N_{obs} < N_{SM} \end{cases}$$

with
$$A = 1 / \left[\int_{0}^{\int} db G(b; N_{SM}, \delta N_{SM}) \sum_{i=0}^{i=0} \frac{e^{-b}b^{i}}{i!} \right].$$

Event Class of Most Interest

Qunatify the significance of the deviation found

What is the probability P to observe a deviation with $p < p_{min}$ anywhere in the distribution of an event class?

- dice hypothetical histograms H_{hyp} according to the pdf of the SMexpectation
- for each of those H_{hyp} the algorithm is run to find the region of largest deviation determined by $p_{min}{}^{hyp}$

-

 $\hat{P} = \frac{\text{number of } H_{hyp} \text{ with } p_{\min}^{hyp} < p_{\min}^{data}}{\text{total number of } H_{hyp}}$

measure of statistical significance

- The event class of most interest is the one with the smallest \hat{P}

Limits on the Cross Section

