Charged multiplicities in inclusive and diffractive deep-inelastic ep scattering at HERA

Eddi A. De Wolf University of Antwerpen, Belgium

On behalf of H1 and ZEUS collaborations

abstracts 377 & 642

Outline

- H1: Charged particle multiplicity (distributions)
 - Kinematic dependences of <n> in DDIS
 - Comparison of DIS with diffractive DIS (DDIS)
- ZEUS: What is correct energy scale in Breit-frame and in hadronic CM frame for comparisons with other processes?
- Apologies for incomplete coverage

Diffraction: ep -> e' + X + Y

~ 10% of DIS events have a rapidity gap

$$t = (p - p')^2$$

$$\beta = x_{quark/IP}$$

$$x_{IP} = x_{IP/proton}$$

$$M_X^2 = Q^2 - \frac{\gamma}{\beta}$$

rapidity-gap ~ $\ln \frac{1}{\beta}$

 χ_{ID}

H1 analysis : Motivation

- Previous H1 analysis on 94 data
 - Dependence of <n> on M_X only

DDIS: W,x,Q², β , x_{IP} , t, M_X

Which kinematic variables are relevant for multiplicity?

- H1 2000 DDIS data:
 - Large statistics allows more differential study:
 W, Q², β dependences at fixed M_X
 - Compare DIS and DDIS

A model for diffraction

Combine QCD & Regge theory: resolved Pomeron model

- Proton infinite momentum frame
- Colorless Pomeron (IP) is built up of quarks/gluons → diffractive PDF's
- Based on QCD and Regge factorization: naïve, probably incorrect but works...!

- Regge factorization implies diffractive final state is independent of proton (fractional) energy loss x_{IP}
- Need sub-leading Reggeon (IR) component besides Pomeron to fit the F2^D Diffractive Structure Function data

4

H1: Data selection DIS and DDIS

2000 nominal vertex data: 46.65 pb⁻¹

Data corrected via Bayesian unfolding procedure: -DIS MC: DJANGOH 1.3, proton pdf CTEQ5L -DDIS MC: RAPGAP resolved pomeron

DIS selection:

- Good reconstruction of scattered electron
- Kinematic cuts:
 - 0.05 < y_{av} < 0.65
 - 5 < Q² < 100 GeV²
 - 80 < W < 220 GeV

DDIS selection:

- Rapidity gap:
 - No activity in the forward detectors
 - $\eta_{max} < 3.3$
- Kinematic cuts:
 - 4 < M_X < 36 GeV
 - x_{IP} < 0.05

Use charged particles with $\eta^*>1$ (acceptance > 90%) in γ^*p CMS frame

Kinematics: Bjorken Plot

H1: <n> (Q²) in DIS & DDIS at fixed W

H1 prel. (η* > 1)

ŝ DIS DDIS 8 < M_x < 15 GeV</p> DIS data DDIS 4 < M_x < 8 GeV</p> DDIS 15 < M_v < 30 GeV</p> 10 DDIS data (fixed M_{x}) 5 80 < W < 115 GeV 115 < W < 150 GeV No stat. signif. ŝ dependence on Q² 10 Weak W-dependence in DDIS 5 150 < W < 185 GeV 185 < W < 220 GeV 0 10^{2} Q² (GeV²) ,10² Fit <n> to 10 10 Q^2 (GeV²) $\langle n \rangle = a + b \log(Q^2)$ 0.4 ρ DIS $\langle n \rangle = a + b \log(Q^2)$ DDIS 4 < M_x < 8 GeV</p> * DDIS $8 < M_{\chi}^{*} < 15 \text{ GeV}$ * DDIS $15 < M_{\chi} < 30 \text{ GeV}$ 0.2 0 -0.2 Further: Rapidity spectra show 160 180 80 100 120 140 200 220 very weak Q² dependence W (GeV)

International Europhysics Conference on High Energy Physics, Lisbon, july 2005

W dependence of <n> in DDIS ?

- Changing W with M_X fixed = changing gap width
- Gap ~ ln(1/x_{IP}) thus ... effectively investigate dependence on x_{IP} of <n>

W dep. of <n> at fixed M_X in DDIS

- At fixed M_X : changing W means changing gap and x_{IP}
- Regge factorization means diffractive pdf's AND Final state properties independent of x_{IP}
- W-dependence = breaking of Regge factorization
- In resolved Pomeron model: pomeron + reggeon
- Large M_X: Data move from Reggeon to Pomeron as W grows

Particle Density in y: DIS \leftrightarrow DDIS

- (1/N) $dn/d(y-y_{max})$
- Central region:
 particle density similar
 for DIS and high M_X
 DDIS

DDIS & DIS particle density not much different although M_X<< W DDIS = gluon-rich system →higher multiplicity

Comparison DIS & DDIS: KNO scaling

H1 prel. (η* > 1)

- Negative particles

- Approximate KNO scaling for DIS and DDIS
- Shape of KNO distribution similar for DIS and DDIS
- Implies that correlations are very similar

Charged particle multiplicity

studied for DIS and DDIS in ep at HERA

Kinematic dependences

I <n> in DIS: main dependence only on W, not Q² or x separately

Comparison DIS and DDIS

DIS and DDIS: density in rapidity similar at highest M_X
 DIS and DDIS: approximate KNO scaling & same shape.

12

ZEUS: e⁺e⁻ & ep : Breit Frame

DIS event

• Use Breit frame to compare multiplicity in ep to (one hemisphere) of e⁺e⁻

• Breit Frame definition:

2xP + q = 0

• "Brick Wall frame": incoming quark scatters off photon and returns along same axis.

• Current region (CR) of Breit Frame is analogous to e^+e^- in O^{th} order pQCD =Quark-Parton Model and energy = Q/2

•But: QCD Compton and Boson-Gluon Fusion processes \rightarrow Particle migration out of current region

K.H.Streng et al. ZPC 2 (1979) 237; S. Chekanov J.Phys. G (1999) 59, hep-ph/9806511; 9810477

•Energy in CR < Q/2

•ZEUS: use measured energy in CR of Breit Frame as energy scale

Early results: <n_{ch}> vs. Q in Breit Frame

ZEUS 1994-97

Current region Breit frame multiplicity vs. Q ↔ e⁺e⁻ data (divided by 2)
Consistent with e⁺e⁻ data for high Q²
Lower than e⁺e⁻ at low Q2

International Europhysics Conference on High Energy Physics, Lisbon, july 2005

ZEUS DIS: <n_{ch} > vs. 2*E_{current}

•NC DIS: Q²>25 GeV² and 70<W< 225 GeV

• Measurement of $\langle n_{ch} \rangle$ dependence on $2 E_{current}$ compared to previous ZEUS measurement vs. Q (in red), and to e⁺e⁻ and pp data

(<n_{ch}> multiplied by 2 for comparison)

 $\bullet 2^* E_{current}$ gives better description of multiplicity at low energy

15

ZEUS: Effective Mass experimental method

- •Measure hadronic final state within $\Delta\eta$ for best acceptance in the central tracking detector (CTD)
- •Measure # charged tracks, reconstruct number of charged hadrons
- •Measure invariant mass of the system (M_{eff}) in corresponding $\Delta\eta$ region

•Energy is measured in the Calorimeter (CAL)

Study: <nch > vs. Meff

$$M_{eff}^{2} = \left(\sum_{i \neq e'} E^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{x}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{y}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{z}^{i}\right)^{2}$$

CAL within the CTD acceptance

International Europhysics Conference on High Energy Physics, Lisbon, july 2005

ZEUS: Lab frame: $\langle n_{ch} \rangle$ vs. M_{eff} in x and Q² bins

ZEUS : Summary

- Measurement in current region of the Breit frame shows similar dependence to e^+e^- if $2^*E_{current}$ is used as the scale (black dots)
- The same dependence is observed for the photon region of the γ *p frame vs. W: (blue dots) (not discussed here)
- \bullet <n> in lab. frame vs. $M_{\rm eff}$ shows no Q² dependence and weak x- dependence

