EPS05, Lisboa, 23 July 2005

Beauty and charm production at HERA with lifetime tag

Massimo Corradi (INFN Bologna)

For the H1 and ZEUS collaborations

b photoproduction in events with two jets at HERA

QCD is expected to make reliable predictions for *b* production: $m_b \sim 4.75$ GeV provides a large scale for perturbative calculations

- LO: Direct- + Resolved- photon diagrams
- full NLO program available (FMNR) produces weighted events containing Q, \bar{Q} (+ g) jets obtained by running jet algorithm on partons correction to hadron level O(5%), taken from MC μ obtained by folding Q with FF (Peterson) and SL decay
- Pythia MC LO + PS, includes Flavour Excitation (FE) diagrams

Old and new results

- $ep \rightarrow e'b\bar{b}X \rightarrow e'jj\mu X'$ measured with muons by H1 and ZEUS in HERA-I data (see talk by B. Naroska)
- Good agreement with NLO except H1 at low P_T^{μ} and low $p_T^{\rm jet}$
- Two new results on *b* (and *c*) photoproduction associated to two jets presented here:
 - ZEUS measurement with HERA-II data, using the microvertex detector (MVD)
 - H1 measurement with inclusive lifetime tag, without any muon requirement

ZEUS measurement with HERA-II data

- Upgraded HERA-II, large Lumi: ZEUS gated 03-04 $e^+p \ \mathcal{L} = 38 \ \text{pb}^{-1}$ ZEUS gated 04-05 $e^-p \ \mathcal{L} > 82 \ \text{pb}^{-1}$
- ZEUS silicon microvertex detector (MVD), taking physics from 2003
- first quantitative results from MVD shown here

The dijet-plus-muon sample

- $\mathcal{L} = 33 \text{ pb}^{-1}$ of 2004 e^+p data
- DIS removed, $0.2 < y_{jb} < 0.8$
- ≥ 2 jets with $p_T^{j_1, j_2} > 7, 6$ GeV K_T agorithm on EFOs
- ≥ 1 muon $p_T^{\mu} > 2.5$ GeV segment in Rear/Barrel/Forward MUON chambers matched to a central track with > 4 hits in the MVD
- μ associated to a jet by K_T algo.
- 1806 events left
- the sample contains μ s from SL decays of *b* and *c*, fake μ from punch-through and in-flight decays of π^{\pm} , K^{\pm}
- reproduced by Pythia 6.2 MC

Extraction of the b and c content

 δ (cm)

Combined fit of p_T^{rel} and δ

Results

- $d\sigma/dp_T^{\mu}$ for $ep \rightarrow e'b\overline{b}X \rightarrow e'jj\mu X'$ $Q^2 < 1$ GeV², 0.2 < y < 0.8 $p_T^{j_1,j_2} > 7, 6$ GeV, $\eta^j < 2.5$ $p_T^{\mu} > 2.5$ GeV, $-1.6 < \eta^{\mu} < 2.3$
- main syst. uncertainty:
 μ chamber efficiency (15%) (rommfor future improvement)
- Agreement with NLO QCD (FMNR) + hadronisation corr.
- Agreement with HERA-I ZEUS data based on \sim 3 times larger luminosity.

In the old measurement p_T^{rel} was used in combination with an external constraint on f_c . Here f_c is obtained from the same data.

• No hint for an excess at low p_T^{μ} , acceptance at low p_T^{μ} improved w.r.t. prev. measurement

H1 measurement with inclusive lifetime tag

- $\mathcal{L} = 57.7 \text{pb}^{-1}$ of 99-00 data
- No DIS e ($Q^2 < 1 {
 m GeV}^2$) , 0.15 < y < 0.8
- ≥ 2 jets with $p_T^{j_1,j_2}>11,8\,$ GeV, $-0.88<\eta^j<1.3$
- ≥ 1 central tracks with $r \phi$ hits in the central silicon tracker (CST), $p_T > 0.5$ GeV and $30^o < \Theta < 150^o$
- jet-track association by cut on ΔR in $\eta \phi$

Inclusive track impact parameter

Tracks

Beam position measured with 5 μm accuracy, beam size: $\sigma_X = 145 \mu m$, $\sigma_Y = 25 \mu m$

 $\sigma_X = 145 \mu m$, $\sigma_Y = 25 \mu m$ Sign defined w.r.t associated jet

• Impact Parameter significance $S = DCA/\sigma_{DCA}$ use only tracks with |DCA| < 1mm

Significance

Extraction of beauty and charm content

Events

Entries

- Significance of second-highest significance track S₂ used to extract b and c content. If only 1 track, S₁ is used instead S₁S₂ > 0
- To reduce dependence from tracking resolution

negative \boldsymbol{S} mirrored and subtracted from positive

• χ^2 fit with fixed normalisation Templates for *b*, *c*, LF taken from Pythia MC

Charm cross sections

• Cross sections for $ep \rightarrow e'c\bar{c}X \rightarrow e'jjX'$ $Q^2 < 1 \text{GeV}^2$, 0.15 < y < 0.8, ≥ 2 jets, $p_T^{j_1,j_2} > 11,8$ GeV, $-0.88 < \eta^j < 1.3$:

 $\sigma(c\bar{c}) = 694 \pm 69(\text{stat.}) \pm 96(\text{syst.}) \text{ pb.}$

- Good agreement with NLO QCD (FMNR) with hadronisation corr.
- QCD uncertainty band: $1.3 < m_c < 1.5 \text{ GeV}$ $\mu_F = 2\mu_R = (0.5...2)\sqrt{m_c^2 + p_T^2}$

Beauty cross sections

• Cross sections for

 $ep \to e'b\overline{b}X \to e'jjX'$

 $\sigma(b\overline{b}) = 145 \pm 18(\text{stat.}) \pm 30(\text{syst.}) \text{ pb.}$

- 1-2 sigma above NLO-QCD at low $p_T^{j_1}$, large η^{j_1} regions where resolved-photon contribution is large...
- QCD uncertainty band: $4.5 < m_b < 5 \text{ GeV}$ $\mu_F = \mu_R = (0.5...2)\sqrt{m_b^2 + p_T^2}$

0.2

0.4

0.6

0.8

 $\mathbf{x}_{\gamma}^{\mathsf{obs}}$

- Data higher than NLO for $x_{\gamma}^{\rm obs} \leq 0.85$ anyway low significance, large hadr. corrections
- Measurement with muons (at lower p_T^{jet}) in agreement with NLO \implies

Conclusions

- Two new measurements of beauty (and charm) photoproduciton in dijet events:
- First *b* results from HERA-II;

the use of the ZEUS MVD improves the determination of b and c content;

good potential, large improvement over HERA-I data expected with full HERA-II luminosity and further understanding of the detector.

• H1 measurement based on inclusive lifetime tagging (without lepton tag);

method largely independent from those of previous measurements.

• Both results in agreement with previous measurements and NLO QCD.

Backup Slides

x_{γ} for Charm

CHARM

p_T^{jet} for beauty in previous data

