International Europhysics Conference on High Energy Physics

Lisboa, 21-27 July 2005

Riccardo Brugnera Padova University and INFN

on behalf of the **ZEUS Collaboration**

Inelastic J/ψ production at HERA

Outline:

- Introduction
- ► *J*/*ψ* production mechanisms
- > Inelastic J/ψ photoproduction
- ▶ Inelastic J/ψ electroproduction
- Conclusions & Outlook

Introduction-I

kinematical variables: $Q^2 = -q^2 = -(k-k')^2$ $s = (P + k)^2$ $W^2 = (\gamma + P)^2$ $z = p_{J/\psi} \cdot P/q \cdot P$ $= E^*_{J/\psi} / E^*_{\gamma}$ in the proton rest frame

- photoproduction (Q² < 1 GeV²):
 scattered *e* not seen in the main detector
- electroproduction (2 < Q² < 100 GeV²): scattered *e* detected in calorimeter
- J/ψ detected through: $\mu^+\mu^-$, e^+e^- decay modes

Introduction-II

Production mechanisms-I

direct photon gluon fusion $z \ge 0.2$

 γ^{r} J/ψ

Colour Singlet Model $c \overline{c}$ must have J/ψ quantum numbers

one parameter fixed from $\Gamma_{w \to l+1-}$

non-relativistic QCD

 $c \overline{c}$ also in colour octet state additional free parameters long distance matrix elements LDMEs LDMEs not calculable \rightarrow from experiment

CS + CO

Production mechanisms-II

resolved photon processes (gluon-gluon fusion): $z \lesssim 0.2$ suppressed with increasing Q^2

Colour Singlet Model

non-relativistic QCD

Photoproduction: comparison with CSM NLO

- Agreement between H1 and ZEUS data
- full NLO calculation of the direct y gluon fusion in the CSM (M. Kraemer)
- within the large theoretical uncertainties, the prediction is in agreement with the data, both in shape and in normalization

Photoproduction: comparison with NRQCD(LO)

LO NRQCD calculation resumming soft contribution at high z (M. Beneke, G.A. Schuler and S. Wolf)

 \succ Λ: Energy loss of *J*/*ψ* due to soft gluon radiation

\Rightarrow resummation reduces discrepancy at high z

Electroproduction

- Inelastic J/ψ production at large Q² has a smaller cross section than in photoproduction but presents several interesting aspects.
- The contribution from the CO model is expected to be more significant.
- Both CO and the CS predictions should be more accurate due to the higher scale in the interaction.
- \succ Backgrounds from diffractive processes are reduced at high Q^2 .

Electroproduction: $d\sigma/dz$ and $1/\sigma d\sigma/dz$

- CS (LO) generally agrees (Kniehl and Zwirner)
 CS + CO: too high at high *z*, resummation needed (such as in *yp* regime) (Kniehl and Zwirner)
- \blacksquare k_t factorisation (CS) gives good description

(Lipatov and Zotov)

CASCADE MC: absolute prediction overshoots the data; shape reasonable

Brugnera Riccardo

ZEUS kinematic range:

 $2 < Q^2 < 80 \text{ GeV}^2$ 50 < W < 250 GeV 0.2 < z < 0.9 $- 1.6 < Y_{\text{lab}} < 1.3$

Electroproduction: $d\sigma/dQ^2$ and $d\sigma/dW$

Electroproduction: $d\sigma/dp^{*2}_{\tau}$ and $d\sigma/dY^{*}$ in $\gamma^{*}p$

Electroproduction: $d\sigma/dlog(M^2_x)$ and $d\sigma/dY_x$

where M_X is the invariant mass of the hadronic final state and Y_X its rapidity

Comparison with H1: $d\sigma/dz$ and $1/\sigma d\sigma/dz$

H1 kinematic range:

 $\begin{array}{l} 2 < Q^2 < 100 \; {\rm GeV^2} \\ 50 < W < 225 \; {\rm GeV} \\ 0.3 < z < 0.9 \\ p^{*2}_{_T} > 1 {\rm GeV^2} \end{array}$

Comparison with H1: $d\sigma/dp^{*2}_{T}$ and $d\sigma/dY^{*}$ in $\gamma^{*}p$

Conclusions and Outlook

- > ZEUS and H1 have produced measurements of inelastic J/ψ in DIS using complete data sample available in HERA I. The measurements are in agreement between them.
- Comparing with existing theoretical models:
 - CS (LO) generally agrees; but after applying $p_{T}^{*2} > 1$ GeV² cut, normalization seems too low and discrepancies at high p_{T}^{*2}
 - CS+ CO too high, wrong *z* dependence.
 - CS with k_T -factorization generally agrees with the data.
 - CASCADE is above data, shapes of distributions reasonable described.
- ▶ Improvement in data statistics possible with HERA II data.
- Calculations with higher order corrections and soft gluon emission treatment are absolutely needed.

Production mechanisms- III (background)

• diffraction (subtracted in ZEUS data ($\approx 6\%$), not subtracted in H1 data (<2%)

suppressed by cuts on:

- z (z < 0.9)
- $p^*_{\mathrm{T},\psi} (\approx p_{\mathrm{T},\psi} \text{ in } \gamma p)$
- additional activity in the detector

elastic diffraction proton dissociation z = 1

 $z \approx 1$

• decay of diffractively or inelastically produced ψ' mesons:

 $\psi' \rightarrow J/\psi \pi \pi$; not subtracted in data!

- decay of χ_c mesons: $\chi_c \to J/\psi \ \gamma$ (low z); not subtracted in data!
- decay of *B* mesons: $B \to J/\psi X$ (low *z*, high $p_{T,\psi}$); not subtracted in data!