Measurements of the Proton Structure Function F_2 at Low Q^2 at HERA

- Deep Inelastic Scattering at HERA
- Initial State Radiation Events
- QED Compton Scattering

HEPP-EPS 2005
Lisbon, 21.07.05
Deep Inelastic Scattering

Neutral Current

\[l \rightarrow l' \]
\[\gamma^* \rightarrow xp \]

Electron
Proton

\[Q^2 = -(l - l')^2 \]

Bjorken variable
\[x = \frac{Q^2}{2p \cdot (l - l')} \]

Inelasticity
\[y \approx \frac{Q^2}{xs} \]

Invariant mass of the hadronic final state
\[W = \sqrt{\frac{Q^2}{x} \frac{1 - x}{x} + m_p^2} \]

\[\frac{d^2\sigma}{dx dQ^2} = \frac{2\pi\alpha^2}{Q^4x} (Y_+ F_2(x, Q^2) - y^2 \cdot F_L(x, Q^2)) \]

\[Y_+ = 1 + (1 - y)^2 \]

\(\text{cms energy} \quad \sqrt{s} = \sqrt{(l + p)^2} \approx 300/320 \text{ GeV} \)
Accessible Phase Space

Medium - high Q^2:
- asymptotic freedom
- perturbative QCD

Low Q^2:
- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models
Accessible Phase Space

Medium - high Q^2:
- asymptotic freedom
- perturbative QCD

Low Q^2:
- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models
Experimental Techniques to Access Low Q^2

Possibilities to access lower Q^2:

- larger polar angles
- lower initial electron energy

$$Q_e^2 = 2E_e E'_e (1 + \cos \theta_e)$$

- standard DIS in main detector:
 $$Q^2 > 2 \text{ GeV}^2$$
Experimental Techniques to Access Low Q^2

A

Nominal IP

Shifted IP

BST

SpaCal

70 cm

Shifted Vertex Runs

larger θ_e

B

Initial State Radiation (ISR)

$E_e \rightarrow E_e - E_\gamma$

C

QED Compton (QEDC)

X

larger θ_e

p
l

p'

q

k

l
Inelastic QED Compton Events

\[e + p \rightarrow e + \gamma + X \]

- smaller polar angle of final state e and \(\gamma \)
- larger polar angle of the intermediate e

\[\Rightarrow \text{access to low } Q^2 \]

- DIS background: \(\pi^0 \) fakes QEDC \(\gamma \)
 - dominates QEDC signature at low x
Medium - high x are measured

- understanding of hadronic final state at low W
- use of SOPHIA Monte Carlo model
F_2 Measurement with QEDC Events

\begin{itemize}
 \item good agreement with fixed target experiments
\end{itemize}
Initial State Radiation (ISR)

• γ is radiated from incoming e
• equivalent to inclusive DIS at reduced $s = 4(E_e - E_\gamma)E_p$
• $Q^2 = sxy$
 \Rightarrow larger x at fixed Q^2

Previous ISR measurements:
• γ directly detected
Untagged ISR in Shifted Vertex (H1)

Kinematics:

• $E - p_z$ is used to determine initial electron energy

\[2(E_e - E_\gamma) = (E - p_z)_{\text{had}} + (E - p_z)_{e'} \]

• γ is undetected
• γp background rejected by BST
F₂ in Shifted Vertex ISR

\[\sigma = F_2 - y F_L \]

\(Q^2 = 0.35 \text{ GeV}^2 \)
\(Q^2 = 0.5 \text{ GeV}^2 \)
\(Q^2 = 0.65 \text{ GeV}^2 \)
\(Q^2 = 0.85 \text{ GeV}^2 \)

- H1 svtx00 ISR prel.
- ZEUS BPT97
- NMC
- H1 QEDC97
- H1 svtx00 prel.

shifted vertex measurement extended to larger x
Improved Extraction of $\lambda(Q^2)$

- rise of F_2 for $x < 0.01$ well parameterised by:
 $$F_2(x, Q^2) = c(Q^2)x^{-\lambda(Q^2)}$$

- at $Q^2 \gtrsim 3 \text{GeV}^2$
 $$\lambda \propto \ln Q^2, \ c \approx \text{const}$$
 partonic degrees of freedom

- at $Q^2 \lesssim 0.5 \text{GeV}$
 $$\lambda(Q^2) \rightarrow 0.08$$
 hadronic degrees of freedom

new data cover transition region
Summary

New measurements of F_2 at low Q^2
which extend the accessible phase space towards larger x

Inelastic QEDC scattering

$0.5 < Q^2 < 7 \text{ GeV}^2$
$2 \cdot 10^{-3} \lesssim x \lesssim 0.1$

- good agreement with fixed target data
- better modelling of the hadronic final state

Untagged ISR in shifted vertex

$0.35 < Q^2 < 0.85 \text{ GeV}^2$
$10^{-4} \lesssim x \lesssim 5 \cdot 10^{-3}$

- improved extraction of $\lambda(Q^2)$
Backup Transparencies
Previous Results at low Q^2

$Q^2 = 0.35$ GeV2, $Q^2 = 0.5$ GeV2, $Q^2 = 0.65$ GeV2

$Q^2 = 0.85$ GeV2, $Q^2 = 1.2$ GeV2, $Q^2 = 1.5$ GeV2

$Q^2 = 2$ GeV2, $Q^2 = 2.5$ GeV2, $Q^2 = 3.5$ GeV2

- H1 svtx00 prelim.
- H1 99 prelim.
- H1 97
- NMC
- ZEUS BPT97

Fractal Fit
ALLM97
H1 QCD Fit
$Q^2_{\text{min}} = 3.5$ GeV2
Rise of F_2 at Low x

- derivative independent of x for $x < 0.01$
- rise of F_2 well parameterised by

$$F_2(x, Q^2) = c(Q^2)x^{-\lambda(Q^2)}$$