

UNIVERSITÄT DORTMUND

Olaf Behrendt University of Dortmund HI Collaboration

Measurements of the Proton Structure Function F_2 at Low Q^2 at HERA

- Deep Inelastic Scattering at HERA
- Initial State Radiation Events
- QED Compton Scattering

Deep Inelastic Scattering

Accessible Phase Space

- Medium high Q^2 :
- asymptotic freedom
- perturbative QCD

Low Q^2 :

- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models

Accessible Phase Space

Medium - high Q^2 :

- asymptotic freedom
- perturbative QCD

Low Q^2 :

- transition to soft hadronic physics
- $\alpha_s(Q^2)$ becomes large
- phenomenological models

4

Experimental Techniques to Access Low Q²

Possibilities to access lower Q^2 :

- larger polar angles
- lower initial electron energy

Experimental Techniques to Access Low Q²

Inelastic QED Compton Events

- \bullet smaller polar angle of final state e and γ
- \Rightarrow access to low Q²
- larger polar angle of the intermediate e
- DIS background: π^0 fakes QEDC γ - dominates QEDC signature at low x

Inelastic QED Compton Events

Medium - high x are measured

- understanding of hadronic final state at low W
- use of SOPHIA Monte Carlo model

F₂ Measurement with QEDC Events

good agreement with fixed target experiments

Initial State Radiation (ISR)

- γ is radiated from incoming e
- equivalent to inclusive DIS at reduced $s = 4(E_e - E_\gamma)E_p$
- $Q^2 = sxy$
 - \Rightarrow larger x at fixed Q²

Previous ISR measurements:

• γ directly detected

Untagged ISR in Shifted Vertex (HI)

Kinematics:

• E - p_z is used to determine initial electron energy

$$2(E_e - E_{\gamma}) = (E - p_z)_{had} + (E - p_z)_{e'}$$

11

- γ is undetected
- γp background rejected by BST

F₂ in Shifted Vertex ISR

Improved Extraction of $\lambda(Q^2)$

rise of F₂ for x < 0.01 well parameterised by: F₂(x, Q²) = c(Q²)x^{-λ(Q²)}
at Q² ≥ 3 GeV²: λ ∝ ln Q², c ≈ const partonic degrees of freedom
at Q² ≤ 0.5 GeV: λ(Q²) → 0.08

hadronic degrees of freedom

new data cover transition region

Summary

New measurements of F_2 at low Q^2 which extend the accessible phase space towards larger x

inelastic QEDC scattering

 $0.5 < Q^2 < 7\,{
m GeV}^2$ $2\cdot 10^{-3} \lesssim x \lesssim 0.1$

- good agreement with fixed target data
- better modelling of the hadronic final state

untagged ISR in shifted vertex

 $0.35 < Q^2 < 0.85 \, {
m GeV}^2 \ 10^{-4} \lesssim x \lesssim 5 \cdot 10^{-3}$

• improved extraction of $\lambda(Q^2)$

Backup Transparencies

Previous Results at low Q²

Rise of F_2 at Low x

- derivative independent of x for x < 0.01
- rise of F₂ well parameterised by

$$F_2(x, Q^2) = c(Q^2) x^{-\lambda(Q^2)}$$