

Search for R-Parity Violating Gaugino and Gravitino Production at HERA

Volker Adler on behalf of the **H1** *and* **ZEUS** *collaboration*

- Introduction
- Gaugino Production (RPV-MSSM) at HERA
- Gravitino Production (RPV-GMSB) at HERA
- Summary & Outlook

Introduction

$e^{\pm}p$ Collisions at HERA

HERA:

 $e^{\pm}p$ storage ring to explore the *p* structure with:

• √s = 300 - 318 *GeV*

 $\rightarrow p$: 820 - 920 GeV, e^{\pm} : 27.5 GeV *)

- L = $15 75 \ nb^{-1} \ s^{-1} \ **)$
- U = 6336 m
- 4 experiments
 → H1, ZEUS, HERMES, HERA-B

H1 & ZEUS:

HEP multi-purpose detectors with:

- asymmetric design
- typical components:
 - tracking detectors
 - calorimeters
 - myon system
- $L > 120 \ pb^{-1}$ per experiment in HERA I

Introduction Supersymmetry

New physics beyond the Standard Model (SM) are expected to arise at ca. **1** TeV.

Supersymmetry (SUSY)

is a promising model for such an extension of the SM.

- new superpartners of SM particles ("sparticles"):
 - S differs by 1/2 (boson-fermion-symmetry)
 - unobserved so far

 \Rightarrow SUSY broken at low energies

- minimum number of sparticles and interactions
 - → Minimal Supersymmetric SM (MSSM)
- assumption on SUSY breaking mechanism e.g.:
 - Gauge-Mediated SUSY Breaking (GMSB):
 - \widetilde{G} expected as lightest sparticle (LSP)
 - $\widetilde{\chi}^{\scriptscriptstyle 0}$ often next to LSP (NLSP)
 - Minimal Supergravity (mSUGRA)

- new discrete, multiplicative quantum number R-parity:
 - $R_{p} = (-1)^{3B+L+2S}$
- {+1 for SM particles
 1 for sparticles
- R-parity conserving (RPC) models often favoured:
 - reduced phenomenology
 - LSP candidate for cold dark matter

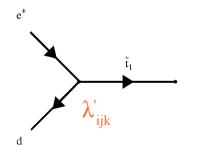
but...

 R-parity violating (RPV) models not excluded explicitly by most general Langrangian

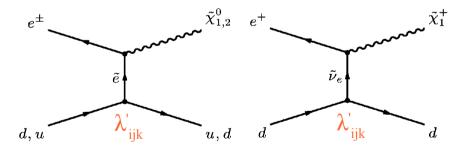
 \Rightarrow SO ...

Introduction R-Parity Violating SUSY in $e^{\pm}p$ Collisions

RPV allows **production of single sparticles** and the **decay of the LSP to SM particles** via additional terms in the superpotential:


at LO:

lepton-hadron colliders

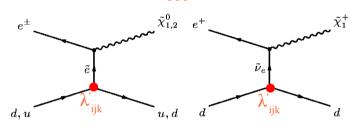

 $W_{RPV} = \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k + \dots$

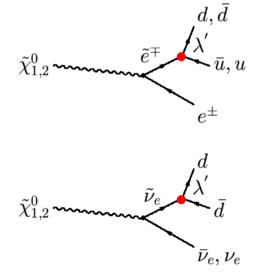
s-channel: squark production

t-channel: gaugino production

no deviations from the SM at HERA so far (H1: Eur.Phys.J. C36, 425 (2004) Phys.Lett. B599, 159 (2004) ZEUS Coll.: presented at DIS05 → v. next talk)

- independent of squark sector
- depends on m_l and m_{γ}
- → recent HERA searches: subjects of this talk



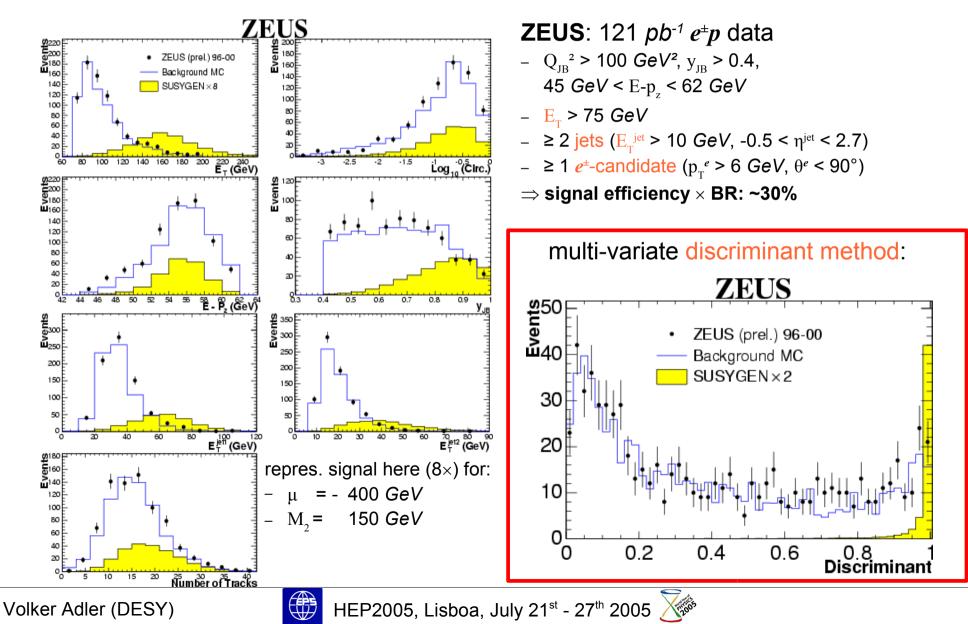

Gaugino Production (RPV-MSSM) at HERA

Introduction

- $\widetilde{\chi}$ production assumed to be dominated by λ'_{111}

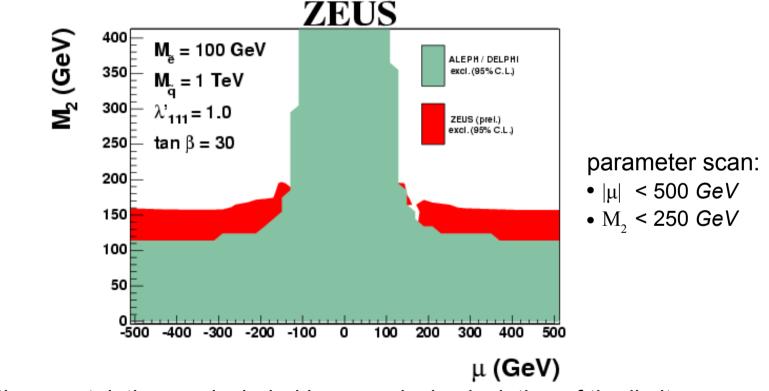
- $\widetilde{\chi}$ decay to $qq + e^{\pm}/v_e/\overline{v}_e$
- this search:
 e[±]-channel
 (BR: 30 70%)
 ↓↓
- search strategy:
 - \geq 2 jets with high p_T
 - high E_{T}
 - \geq 1 e^{\pm} -candidate

- signal assumptions:
 - large squark masses $M_{\tilde{q}} = 1 \text{ TeV}$
 - degenerate slepton masses
 - $M_{\tilde{l}}$ = 100 GeV
 - $\tan(\beta) = 30$
 - λ'_{111} = 1.0
- main SM background:
 - NC DIS di-jet events



Gaugino Production (RPV-MSSM) at HERA

Event Selection

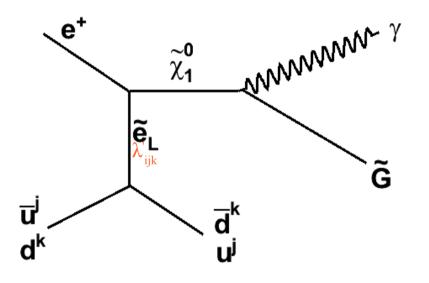


Gaugino Production (RPV-MSSM) at HERA Results

No deviations from SM are observed in high discriminant region.

 \Rightarrow limits in μ -M, plane improved compared to LEP results

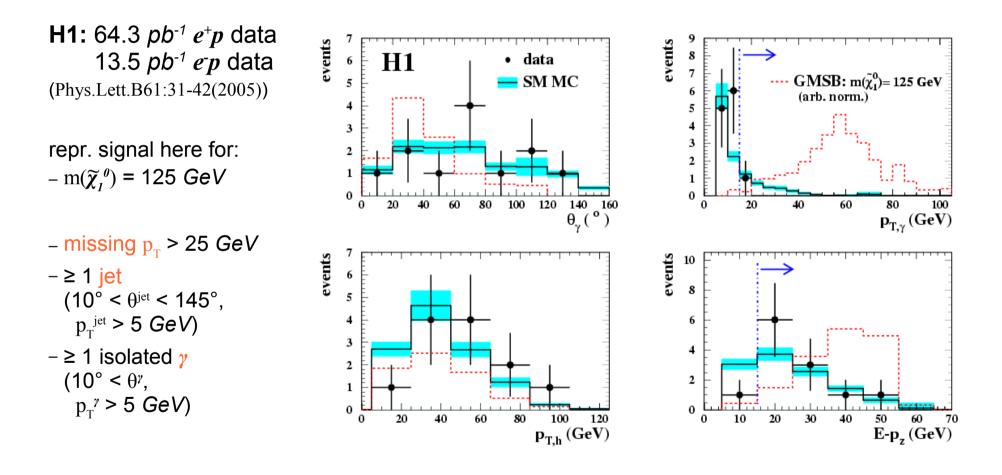
Systematic uncertainties are included in numerical calculation of the limits as uncorrelated Gaussian fluctuations in the number of signal and background events.



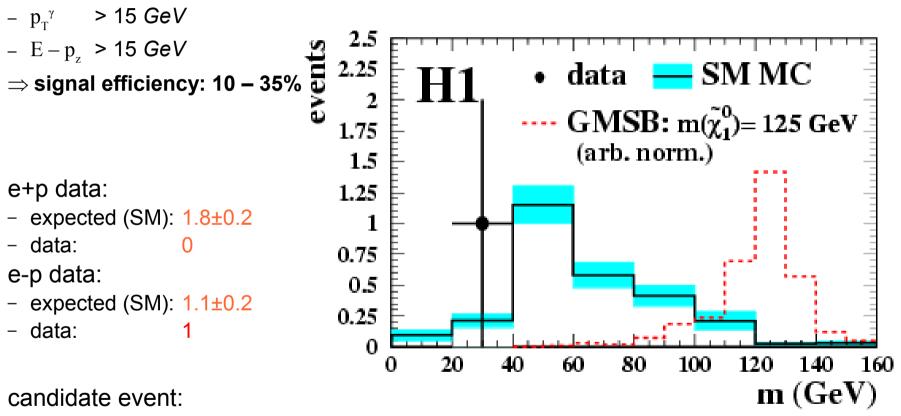
Introduction

- $\widetilde{\chi}_{I}^{\ \theta}$ production via t-channel \widetilde{e}_{L} exchange
- *i* masses independent of squark sector here
 - $\Rightarrow \Delta m = m(\widetilde{e}_L) m(\widetilde{\chi}_I^{\ \theta})$ can be small
- $-\widetilde{\chi}_{I}^{\ \theta}$ (NLSP) decays to \widetilde{G} (LSP) + γ
- search strategy:
 - missing \mathbf{p}_{T} (from undetected $\widetilde{\mathbf{G}}$)
 - isolated γ with high E_{γ}
 - ≥ 1 jet
- accessable Yukawa couplings:
 - *e*⁺*p* scattering: λ'_{1j1}, j = 1,2
 (j=3 suppressed due to high top quark mass)
 - *e*p scattering: λ'_{11k} , k = 1,2,3

- main SM background:
 - CC DIS events with real (radiative) and fake γ


This final state has not been analysed at HERA before.

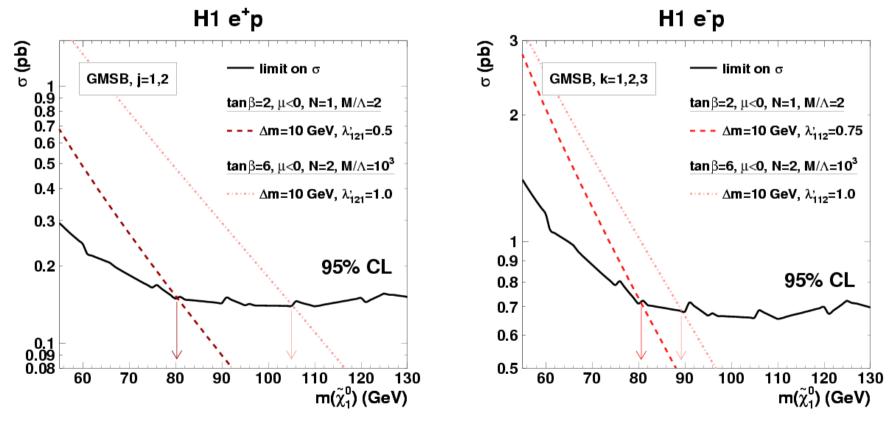
Control Selection (H1)



Final Selection (H1)

- m($\widetilde{\chi}_{I}^{\theta}$) = 36±4 GeV

Systematic uncertainties are included in numerical calculation of the limits as uncorrelated Gaussian fluctuations in the number of signal and background events.



Gravitino Production (RPV-GMSB) at HERA Results I (H1)

No deviations from SM are observed.

 \Rightarrow first limits from HERA, which are independent on squark sector

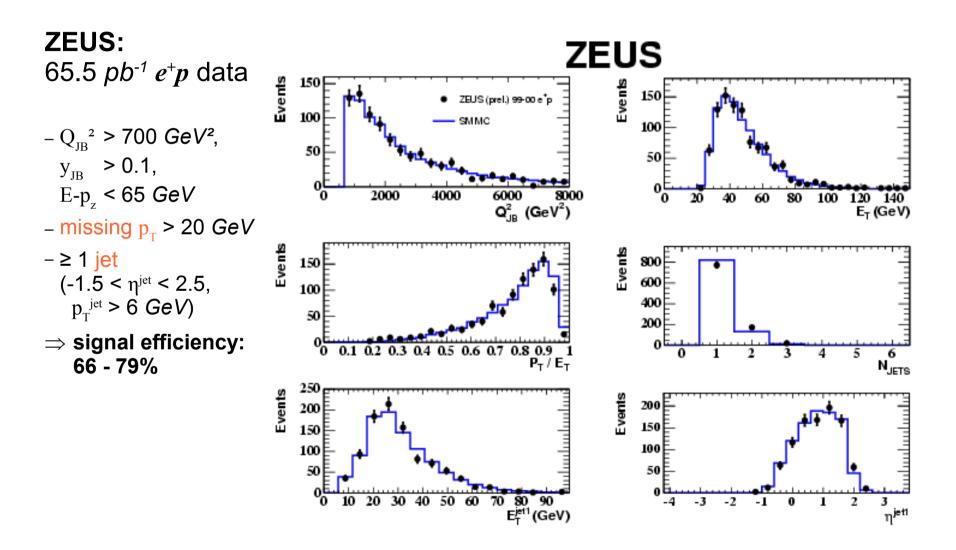
Results II (H1)

here:

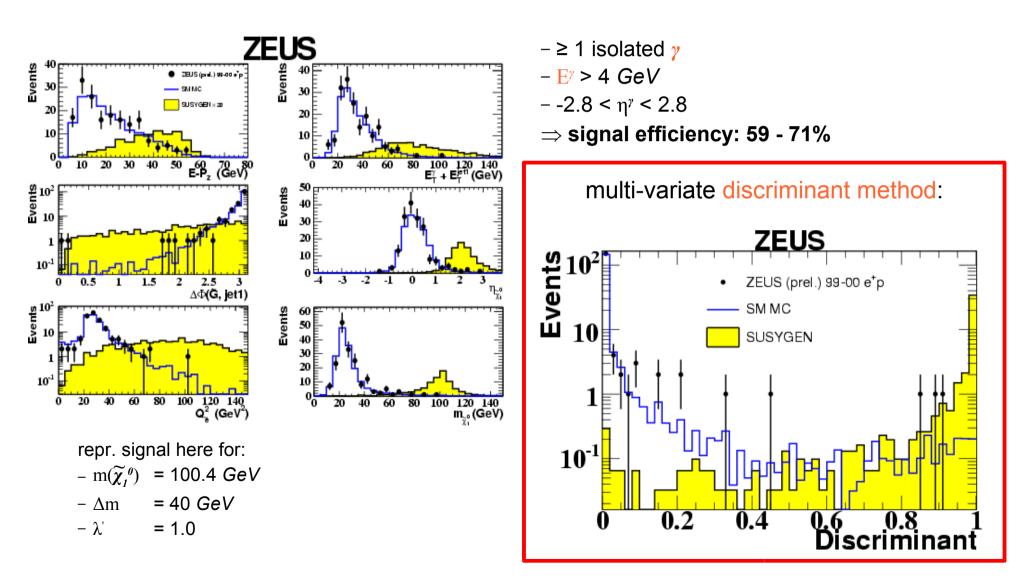
- mass difference
- Yukawa coupling

Limits:

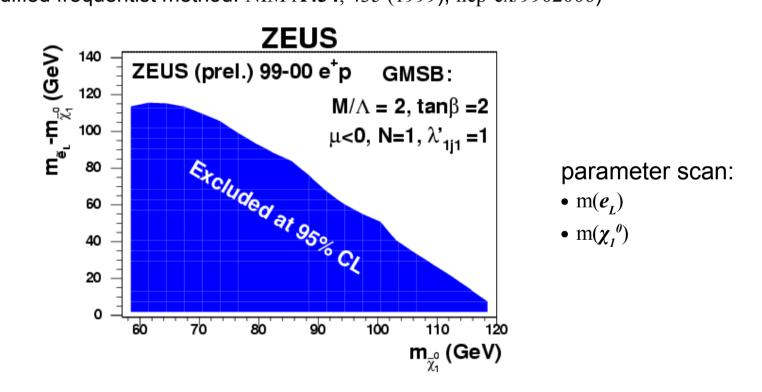
- $m(\tilde{e}_I^{\ \theta}) > 164 \ GeV$ for large Δm and $\lambda' = 1.0$
- $m(\widetilde{\chi}_{I}^{\theta}) > 112 \text{ GeV}$ for small Δm and $\lambda' = 1.0$
- $\lambda'_{1j1} > O(\alpha_{EM})$ for small $m(\tilde{\chi}_{I}^{0})$ and Δm



Control Selection (ZEUS)



Final Selection (ZEUS)



Gravitino Production (RPV-GMSB) at HERA Results (ZEUS)

No deviations from SM are observed in high discriminant region.

 \Rightarrow limits in m(χ_1^{θ})- Δ m plane improved compared to particular H1 result (modified frequentist method: NIM A434, 435 (1999), hep-ex/9902006)

Systematic uncertainties are included in numerical calculation of the limits as uncorrelated Gaussian fluctuations in the number of signal and background events.

Summary

Squark independent searches for R-parity violating gaugino and gravitino production have been performed by H1 and ZEUS in the HERA I data set. No deviations from the Standard Model have been found in the explored parameter spaces.

Exclusion limits have been:

- extended for the $\mu\text{-}M_2$ plane in RPV-MSSM by ZEUS
- set in RPV-GMSB by H1:
 - $m(\widetilde{\chi}_{I}^{\theta}) > 112 \text{ GeV}$ for small Δm and $\lambda' = 1.0$
 - $m(\tilde{e}_L) > 164 \text{ GeV}$ for large Δm and $\lambda' = 1.0$
 - $-\lambda'_{1j1} > O(\alpha_{EM}) \quad \text{for small } m(\widetilde{\chi}_{I}^{\theta}) \text{ and } \Delta m$
 - for σ and Δm depending on $m(\widetilde{\pmb{\chi}}_I^{\ \textit{0}})$ and various parameter sets
- extended for the m(χ̃_I^θ)-Δm plane and one particular parameter set in RPV-GMSB by ZEUS

Outlook

- higher luminosity of HERA II

 (goal: 700 pb⁻¹ by July 2007, > 110 pb⁻¹ so far)
 ⇒ much more statistics
 ⇒ all searches benefit
- increase in fraction of *e*⁻*p* data
 - \Rightarrow especially RPV-SUSY searches benefit

 $(e^{-}p)$ data more sensitive because of coupling to u-quark)

We are looking forward to first results from HERA II ...

