Electroweak Physics
in ep Collisions at HERA

Frontiers in Contemporary Physics
Vanderbilt University
May, 23-28, 2005

Christian Schwanenberger
DESY/Universität Bonn

on behalf of the

Collaborations
Electroweak Physics at HERA

- **NC** and **CC** cross section (unpolarised)
- W mass and electroweak parameters
- **CC** cross section with polarised leptons (HERA II)
- Isolated Leptons and missing pT (HERA II)
- W Production

➡ What is new compared to summer (ICHEP)
HERA: ep Collider and Experiments

\[E_e = 27.6 \text{ GeV} \]
\[E_p = 920 \text{ GeV} \]

[Diagram of the HERA accelerator complex with labels for different energies and experiments.]
HERA Delivered Luminosities

longitudinally polarised electron beam

longitudinally polarised positron beam

2005:
H1 40 pb⁻¹
ZEUS 60 pb⁻¹

2004:
H1 and ZEUS 50 pb⁻¹

1992-2000:
H1 and ZEUS ~130 pb⁻¹
DIS – Neutral Current (NC)

deep inelastic scattering (DIS):

\[Q^2 = - (k - k')^2 \]

\[p_q = xP \]

\[Q^2: \text{ four-momentum transfer} \]

\[\text{spatial resolution } \sim \frac{1}{Q} \]

\[\Rightarrow 10^{-16} \text{ cm} \]

\[x: \text{ fractional momentum of the struck quark} \]

H1 detector
DIS - Charged Current (CC)

deep inelastic (DIS) scattering:

\[Q^2 = - (k-k')^2 \]

H1 detector

\[p_T^{\text{miss}} = 106 \text{ GeV} \]
Deep Inelastic Scattering at High Q^2

(unpolarized beams)

\[\sim \frac{1}{Q^4} \]

photons

\[\sim \left[\frac{M_W^2}{Q^2 + M_W^2} \right]^2 \]

W boson

Unification of electromagnetic and weak interactions
Determination of W-Mass

\[
\frac{d^2\sigma_{cc}^{\pm}}{dx \, dQ^2} = \frac{G^2}{2\pi} \cdot \left(\frac{M_w^2}{Q^2 + M_w^2}\right)^2 \cdot \Phi^\pm(pdfs)
\]

Mw is propagator mass (enters in Q2 dependency)

Fermi constant G includes most of the radiative corrections

\[
\frac{d^2\sigma_{cc}^{\pm}}{dx \, dQ^2} = \frac{\pi\alpha^2}{4M_w^4} \cdot \left(1 - \frac{M_w^2}{M_Z^2}\right)^2 \cdot \frac{1}{1 - \Delta r} \cdot \left(\frac{M_w^2}{Q^2 + M_w^2}\right)^2 \cdot \Phi^\pm(pdfs)
\]

OMS scheme: Mw also enters in normalization

Radiative correction Δr computed in SM framework

- model independent measurement
- t-channel exchange unique at HERA
- Standard Model-dependent (H. Spiesberger: EPRC)

On Mass Shell renormalisation scheme

- combined EW-QCD fit to determine EW parameters accounting for their correlation with parton distributions
Results of Mass Fits:

G-Propagator

\[M_W = 82.87 \pm 1.83 \, \text{(exp)} \pm 0.30 \, \text{(mod)} \, \text{GeV} \]

Model uncertainties \((\alpha_s, Q^2, \ldots)\)

OMS Scheme

\[M_W = 80.786 \pm 0.207 \, \text{(exp)}^{+0.048}_{-0.029} \, \text{(mod)} \pm 0.025 \, \text{(top)} \pm 0.033 \, \text{(th)} - 0.084 \, \text{(Higgs)} \, \text{GeV} \]

\[(120 \rightarrow 300 \, \text{GeV}) \]

\[\sin^2 \theta_W = 0.2151 \pm 0.0040 \, \text{(exp)}^{+0.0019}_{-0.0011} \, \text{(th)} \]

→ consistent with the Standard Model
Quark Couplings to the Z Boson

\[F_2 = \sum_q \left[e_q^2 - 2e_q v_e v_e \chi_Z + \left(v_q^2 + a_q^2 \right) v_e^2 + a_e^2 \chi_Z^2 \right] x(q + \bar{q}) \]

\[xF_3 = \sum_q \left[-2e_q a_q a_e \chi_Z + 4v_q a_q v_e a_e \chi_Z^2 \right] x(q - \bar{q}) \]

\[a_q = I_3^L \quad \text{Axial coupling, } I^3=+1/2 \text{ for } u, -1/2 \text{ for } d \]

\[v_q = I_3^L - 2e_q \sin^2 \theta_W \quad \text{Vector coupling} \]

→ already as sensitive as LEP
→ polarisation: shrinks in v_u
→ removes LEP ambiguities

Fit: PDF+couplings

H1 preliminary

- v_u-PDF
- v_d-PDF

$68\% \text{ CL}$

Standard Model

LEP EWWG preliminary (Feb. 05)
CC with Polarized Leptons

ZEUS e^+p, 31 pb$^{-1}$, $P_e = +32\%$, -40\%
New: H1 e^-p, 18 pb$^{-1}$, $P_e = -25\%$

\Rightarrow good understanding of detectors
CC with Polarised Leptons

$$\sigma^\pm_{CC} = (1 \pm P) \sigma^{(P=0)}_{CC}$$

$$P = (N_{RH} - N_{LH}) / (N_{RH} + N_{LH})$$

NEW:

- first measurements of the helicity dependence of the CC cross section
- no hint for right-handed CC

$$\sigma_{e^+ p \rightarrow \bar{\nu} X} (P_{e^+} = -1) = 0.2 \pm 1.8 \text{(stat)} \pm 1.6 \text{(sys)} \text{ pb}$$

2004

- $$e^+ p \rightarrow \bar{\nu} X$$
 - H1 (prel.)
 - H1
 - ZEUS (prel.)
 - ZEUS

2005

- $$e^- p \rightarrow \nu X$$
 - SM (MRST)

$$Q^2 > 400 \text{ GeV}^2$$

$$y < 0.9$$
High p_T Lepton Events at HERA

$e^+p \rightarrow \mu^+ X + \text{PTmiss}$

- isolated lepton (e or μ)
- high hadronic p_T
- missing calorimeter p_T

Possible other explanations:

Anomalous top production, **RPV SUSY**: e.g. $ep \rightarrow \bar{t} \rightarrow \bar{b}W$ (talk by C.N. Nguyen)

Standard Model:

dominated by W production

in NLO-QCD: Diener, C.S., Spira

High p_t, Lepton Events at HERA

Example of Tau Candidate

$$P_T^{CAL} = 39 \text{ GeV} \quad P_T^X = 37 \text{ GeV} \quad M_T = 68 \text{ GeV}$$

τ jet: collimated "pencil like"
Isolated Leptons at HERA II

H1 Collaboration (updated since ICHEP)

HERA II: complete positron sample

HERA I+II combined electron+positron

Search for \(l+P_T^{\text{miss}}\) events at HERA II (53 pb\(^{-1}\))

- H1 Data (prelim.) \(N_{\text{Data}} = 10\)
- All SM \(N_{\text{SM}} = 6.1 \pm 0.9\)

\(\rightarrow\) slight excess at high \(p_T^X\)

Search for \(l+P_T^{\text{miss}}\) events at HERA 1994-2005 (\(e^+p\), 192 pb\(^{-1}\))

- H1 Data (prelim.) \(N_{\text{Data}} = 34\)
- All SM \(N_{\text{SM}} = 23.3 \pm 3.1\)

\(\rightarrow\) clear excess at high \(p_T^X\)
Updated Isolated Lepton Results at HERA II

H1 1994-2005

<table>
<thead>
<tr>
<th>$\mathcal{L}(e^{\pm}p) = 192 \text{ pb}^{-1}$</th>
<th>Electron obs./exp.</th>
<th>Muon obs./exp.</th>
<th>Tau$^{\text{prel.}}$ obs./exp.</th>
<th>W contrib. $e\mu (\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td>25/18.4 ± 2.5</td>
<td>9/4.9 ± 0.8</td>
<td>5 / 5.81 ± 1.36</td>
<td>≈ 75(15)%</td>
</tr>
<tr>
<td>$P_T^{X} > 25$ GeV</td>
<td>11/2.9 ± 0.6</td>
<td>6/2.9 ± 0.6</td>
<td>0 / 0.53 ± 0.10</td>
<td>≈ 85(50)%</td>
</tr>
</tbody>
</table>

ZEUS 1994-2000

<table>
<thead>
<tr>
<th>$\mathcal{L}(e^{\pm}p) = 130 \text{ pb}^{-1}$</th>
<th>Electron obs./exp.</th>
<th>Muon obs./exp.</th>
<th>Tau obs./exp.</th>
<th>W contrib. $e\mu (\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td>24 / 20.6 ± 3.2</td>
<td>12 / 11.9 ± 0.6</td>
<td>3 / 0.4 ± 0.12</td>
<td>≈ 17(48)%</td>
</tr>
<tr>
<td>$P_T^{X} > 25$ GeV</td>
<td>2 / 2.9 ± 0.46</td>
<td>5 / 2.75 ± 0.21</td>
<td>2 / 0.2 ± 0.05</td>
<td>≈ 50(50)%</td>
</tr>
</tbody>
</table>

→ combined electron+muon (H1):

full sample : $34/23.3 \pm 3.2$ (73%)

$P_T^{X} > 25$ GeV : $17/5.8 \pm 1.1$ (84%)

= HERA I+II
W production: \(W \rightarrow e \nu \)

New ZEUS analysis (66 pb\(^{-1}\), e\(^+\)p, HERA I)

- **Graphic 1:**
 - **Y-axis:** Events
 - **X-axis:** \(\theta_e (\text{rad}) \)
 - **Legend:**
 - Black circles: ZEUS (Prel.) 99-00
 - Yellow: SM MC
 - Red: Signal MC

- **Graphic 2:**
 - **Y-axis:** Events
 - **X-axis:** \(P_T^e \) (GeV)

- **Arrow:** good understanding of detector
5 events found $\Rightarrow \sigma < 2.8$ pb at 95% CL
Summary

• **HERA** performs a wide range of analyses of electroweak physics
 • very good understanding of **NC** and **CC** cross section
 over more than 7 orders of magnitude!
 • measurement of W mass for t-channel W-exchange (unique at HERA)
 • remove LEP ambiguities for Zqq couplings
 • **lepton polarisation**: parity violation of **CC** interaction in agreement with **SM**
 • limit on **W production** cross section
 • Still very interesting excesses in \(e\nu + \mu\nu \) by **H1**, in \(\tau\nu \) by **ZEUS**
 and also in recent data \(e\nu \) by **H1**

⇒ more luminosity needed to solve “Isolated Lepton Puzzle”

Outlook

• **HERA** provides now \(e^-p \) collisions (only \(\approx 20 \text{ pb}^{-1} \) from 1998/99)

⇒ interesting potential for more “Electroweak Physics from HERA”
Backup
Isolated Lepton Results at HERA I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{L}(e^\pm p) = 118$ pb$^{-1}$</td>
<td>$\mathcal{L}(e^\pm p) = 130$ pb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Full sample</td>
<td>11 / 11.5 ± 1.5</td>
<td>24 / 20.6 ± 3.2</td>
</tr>
<tr>
<td>$p_T^X > 25$ GeV</td>
<td>5 / 1.76 ± 0.30</td>
<td>2 / 2.9 ± 0.46</td>
</tr>
<tr>
<td>$p_T^X > 40$ GeV</td>
<td>3 / 0.66 ± 0.13</td>
<td>0 / 0.94 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>8 / 2.94 ± 0.50</td>
<td>12 / 11.9 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>6 / 1.68 ± 0.30</td>
<td>5 / 2.75 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>3 / 0.64 ± 0.14</td>
<td>0 / 0.95 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>5 / 5.81 ± 1.36</td>
<td>3 / 0.4 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>0 / 0.53 ± 0.10</td>
<td>2 / 0.2 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>0 / 0.22 ± 0.05</td>
<td>1 / 0.07 ± 0.02</td>
</tr>
</tbody>
</table>

W contribution is NLO: Diener, Schwanenberger, Spira

Observed excesses in H1 + Zeus do not match channels