Proton structure functions and parton distribution functions at the HERA ep collider

Catherine Fry
Imperial College London
for the ZEUS and H1 Collaborations
Frontiers in Contemporary Physics III
Nashville, May 2005
Outline

- HERA luminosities and kinematics
- The ZEUS and H1 detectors
- Deep inelastic scattering
- F_2, xF_3 and F_L structure functions and high Q^2 cross sections
- Parton distributions from QCD fits
- High Q^2 cross sections with polarised leptons
- Summary and future prospects
HERA

- ep collider in Hamburg, Germany
- Centre of mass energy of 320 (300) GeV
- In 2000-2002 HERA I upgraded to HERA II
 - Increased luminosity
 - Polarised leptons

<table>
<thead>
<tr>
<th>HERA luminosity (pb⁻¹)</th>
<th>HERA I (92-00)</th>
<th>HERA II (02-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e⁻p</td>
<td>27</td>
<td>> 80</td>
</tr>
<tr>
<td>e⁺p</td>
<td>165</td>
<td>90</td>
</tr>
</tbody>
</table>
The ZEUS and H1 detectors

ZEUS
- General-purpose detector
- Depleted uranium calorimeter
 - $\sigma(E_{\text{EM}})/E_{\text{EM}} = 0.18/\sqrt{E_{\text{EM}}}$
 - $\sigma(E_{\text{HAD}})/E_{\text{HAD}} = 0.35/\sqrt{E_{\text{HAD}}}$
 - Systematics 1-2 %

H1
- General-purpose detector
- Liquid argon calorimeter
 - $\sigma(E_{\text{EM}})/E_{\text{EM}} = 0.12/\sqrt{E_{\text{EM}}} \pm 0.01$
 - $\sigma(E_{\text{HAD}})/E_{\text{HAD}} = 0.50/\sqrt{E_{\text{HAD}}} \pm 0.01$
 - Systematics 0.3-3 %
Deep inelastic scattering kinematics

- Q^2 is a measure of the probing power
 - High Q^2 \Rightarrow small distance scale
 - Can probe $1/1000$ proton
- x is Bjorken scaling variable
 - Fraction of proton’s momentum carried by struck parton
- y related to θ in CoM frame
 - Fraction of lepton’s energy transferred to the proton

\[
Q^2 = -q^2 = -(k - k')^2
\]

\[
x = \frac{Q^2}{2p \cdot q}
\]

\[
y = \frac{p \cdot q}{p \cdot k}
\]

\[
s = (p + k)^2
\]

\[
Q^2 = xys
\]
HERA kinematic range

- x dependence must be determined empirically from fits to cross sections
- HERA covers very large x range
- At low x measure gluon PDFs
- At high x measure $x F_3$ and valence quark PDFs
- Then extrapolate using pQCD to other Q^2 values
- LHC requires precise knowledge of PDFs from HERA to extrapolate into region of LHC new physics
Deep inelastic scattering cross sections

- Neutral current - exchange Z^0 / γ

$$
\frac{d^2\sigma^\pm}{dx \, dQ^2} = \frac{2\pi \alpha^2}{x Q^4} Y_+ \left(F_2 - \frac{y^2}{Y_+} F_L + \frac{Y_-}{Y_+} x F_3 \right)
$$

$$
\bar{\sigma}_{NC}(x, Q^2)
$$

- Charged current - exchange W^\pm

$$
\frac{d^2\sigma^\pm}{dx \, dQ^2} = \frac{G_F^2}{4\pi x} \frac{M_W^4}{(Q^2 + M_W^2)} \left(Y_+ F_2^{CC} - y^2 F_L^{CC} + Y_- x F_3^{CC} \right)
$$

$$
\bar{\sigma}_{CC}(x, Q^2)
$$
The structure functions

\[F_2 \propto \sum x (q + \bar{q}) \quad x F_3 \propto \sum x (q - \bar{q}) \quad F_L \propto \alpha_s x g(x, Q^2) \]

- \(F_2 \) is dominant contribution to cross sections
- \(x F_3 \) becomes significant at high \(Q^2 \)
- \(F_L \) is only important at low \(Q^2 \) and high \(y \)
- At HERA can study sea and valence quarks
- Also gluons via scaling violations and jet data
- CC with \(e^-p \) (\(e^+p \)) most sensitive to u (d) valence quark

\[
\frac{d^2 \sigma_{CC}^-}{dxdQ^2} \propto \left((u + c) + (1 - y)^2 (\bar{d} + \bar{s}) \right) \\
\frac{d^2 \sigma_{CC}^+}{dxdQ^2} \propto \left((\bar{u} + \bar{c}) + (1 - y)^2 (d + s) \right)
\]
F_2 measurement

$F_2 \propto \sum x (q + \bar{q})$

- Sensitive to sum of quark and anti-quark
- Measured to 2-3 % precision
- Low $Q^2 \Rightarrow$ systematic error dominates
- High Q^2 (beyond 1000 GeV2) \Rightarrow statistical error dominates
F₂ measurement

- Measure over huge range
 - $1 < Q^2 < 30,000 \text{ GeV}^2$
 - $10^{-5} < x < 1$
- F₂ sensitive to gluon density by QCD radiation
 - scaling violation
 - F₂ not constant with Q²
- ZEUS and H1 data in agreement and well-described by QCD
Low $Q^2 F_2$ measurement

- F_2 well measured in bulk region
- Now extend HERA’s range
 - $0.5 < Q^2 < 7$ GeV2
 - $0.001 < x < 0.06$
- Based on analysis of QED Compton events
 - Cross section depends on F_2 and F_L, but y small so $F_L \sim 0$
- Overlap with fixed target data in good agreement
High Q^2 neutral current cross sections

- At high Q^2 σ_{NC} different for e^- and e^+
- Small cross sections so need high luminosity
- Can measure difference between cross sections and extract xF_3
\(xF_3 \) measurements

- \(xF_3 \) comes from \(\gamma-Z^0 \) interference and \(Z^0 \) exchange
- Confirm valence quark structure of proton
- Large statistical uncertainty
 - Using small HERA I e\(-p \) sample
 - Now collecting more e\(-p \) data at HERA II…
High x neutral current cross sections

- Hard to measure PDFs at high x
 - Low statistics
 - High migration
- New reconstruction method at high x
 - Use E_{jet} and θ_{jet}
 - Better x resolution at high x
- Cross section measurements in good agreement with theory
- Will be used as input to fits to measure PDFs at high x more accurately

![Graphs showing cross section measurements for various values of x and Q^2.](Image)
The longitudinal structure function F_L

\[F_L \propto \alpha_s x g(x, Q^2) \]

- Important only at high y and low Q^2
- Zero in LO QCD
- Appears in NLO QCD
 - directly sensitive to gluon distribution
- Test QCD
- ZEUS and H1 use different methods to measure F_L
 - ZEUS - events with initial state radiation for varying \sqrt{s}
 - H1 - ‘shape method’
F_L measurement: ZEUS

- NC with initial state radiation
- For fixed x and Q^2 can measure at range of y values by varying \(\sqrt{s} \)
- Measure

\[
\delta_{F_L} = \frac{\sigma(F_L \neq 0)}{\sigma(F_L = 0)} = \frac{F_2 - (1 - \epsilon) F_L}{F_2}
\]

where

\[
\epsilon = \frac{2(1 - y)}{1 + (1 - y)^2}
\]

- Fit

\[
\frac{N_{data}}{N_{MC}(F_L = 0)} = N \delta_{F_L}
\]

with N and F_L as free parameters
- Consistent with NLO QCD \(\Rightarrow \) method works
- Would have to vary beam energy for greater precision
F_L measurement:

H1

- Fit

 $\tilde{\sigma} = F_2 - \frac{y^2}{Y_+} F_L$

 with $F_2 = cx^{-\lambda}$

 and $F_L(x, Q^2) = F_L(Q^2)$

 in bins of Q^2 at $<y>$

 - c, λ and F_L free
 - F_L constant over small x range
 - Fits match data well
F_L measurement: $H1$

- F_L measurement and predictions consistent
Charged current cross sections

\[\frac{d^2\sigma^{CC}}{dx dQ^2} \propto \left((u + c) + (1 - y)^2 (d + s) \right) \]

\[\frac{d^2\sigma^{+}}{dx dQ^2} \propto \left((\bar{u} + \bar{c}) + (1 - y)^2 (d + s) \right) \]

- e^-p most sensitive to u(x,Q^2)
- e^+p most sensitive to d(x,Q^2)
- e^+p cross section suppressed by factor (1-y)^2
- Small cross sections
 - Large statistical errors
- H1 and ZEUS agree
- Agree with global PDFs
Parton distributions

● Want high precision e.g. for high-x gluon PDFs at LHC
● Perturbative QCD (pQCD) cannot calculate PDFs
● Measure them at some Q^2 and fit as a function of x
● Evolve to higher Q^2 with pQCD
● HERA fits previously used
 ● Heavy target data to constrain valence quarks
 ● World F_2 data
 ● Inclusive cross sections to parameterise gluon by scaling violations
● Many experiments, each with own systematics
● Now use HERA-only data
 ● High Q^2 CC and NC constrain valence and low-x sea and gluon
 ● Jet data to constrain mid to high-x gluon directly
Jet data

- QCD Compton and boson-gluon fusion processes
 - Distinct jets in final state
- QCDC depends on α_s and $q_i(x,Q^2)$
- Constrain q_i with NC and CC data
- BGF depends on $g(x,Q^2)$
 - Constrain gluon directly

ZEUS

$\frac{d\sigma}{dE_{T,\text{jet}}^B} \text{ (pb/GeV)}$

- ZEUS-JETS
 - tot. uncert.
 - ZEUS incl. jet DIS 96-97
 - Jet energy scale uncert.

- $125 < Q^2 < 250 \text{ GeV}^2$ ($\times 10^5$)
- $250 < Q^2 < 500 \text{ GeV}^2$ ($\times 10^4$)
- $500 < Q^2 < 1000 \text{ GeV}^2$ ($\times 10^3$)
- $1000 < Q^2 < 2000 \text{ GeV}^2$ ($\times 100$)
- $2000 < Q^2 < 5000 \text{ GeV}^2$ ($\times 10$)
- $Q^2 > 5000 \text{ GeV}^2$ ($\times 1$)

$E_{T,\text{jet}}^B$ (GeV)

$E_{T,\text{jet}}^B$ (GeV)
Parton distributions with jet data

- ZEUS and H1 PDFs consistent
- PDFs with jet data consistent with MRST and CTEQ
Gluon PDFs with jet data

- Precision of mid to high-\(x\) gluon PDF improves with inclusion of jet data.
\(\alpha_s \) determination from QCD fits

- **Jet shapes in NC DIS**
 - ZEUS (DESY 04-072 - hep-ex/0405065)
- **Multi-jets in NC DIS**
 - ZEUS prel. (contributed paper to ICHEP04)
- **Inclusive jet cross sections in \(\gamma p \)**
- **Subjet multiplicity in CC DIS**
 - ZEUS (Eur Phys Jour C 31 (2003) 149)
- **Subjet multiplicity in NC DIS**
- **NLO QCD fit**
- **NLO QCD fit**
 - ZEUS prel. (contributed paper to ICHEP04)

\[\alpha_s(M_Z) = 0.1183 \pm 0.0028 \text{(exp)} \pm 0.0008 \text{(model)} \pm 0.0030 \text{(scale)} \]

- Jet data significantly improves precision of \(\alpha_s \) determination
- \(\alpha_s(M_Z) = 0.1183 \pm 0.0028 \) (exp) \pm 0.0008 (model) \pm 0.0030 (scale)
- Large uncertainty from scale
 - Would improve with NNLO fits

- Compatible with world average with competitive precision
Spin-dependent CC cross section

- HERA II is delivering polarised leptons
- Charged current cross section
 \[\sigma^{\pm}(P) = (1 \pm P)\sigma_{0}^{\pm} \]
- No RH CC in SM
 \[\sigma(P=\pm1) = 0 \]
- Can test spin-dependent part of SM
- Higher cross sections increase statistics and improve precision of structure function and PDF measurements
Spin-dependent CC cross section

- Latest results from e^-p running
- Highest CC cross section from LH e^-
- Results in agreement with SM
- Data-taking is continuing with both lepton helicities
Summary and outlook

- HERA provides important measurements of structure functions and PDFs
- Inclusion of jet data in fits to measure PDFs has constrained gluon PDF - especially important for LHC
- HERA luminosity still increasing so will be able to provide even more accurate measurements of structure functions and PDFs
- Combine ZEUS and H1 data for global fits
- NNLO QCD fits