Exotic States: Challenges for QCD Bad Honnef, January 17-21, 2005

Evidence for a narrow anti-charmed baryon state

Karin Daum - Wuppertal

on behalf of

Outline:

- HERA & Deep inelastic scattering
- Charm production at HERA
- Search for an anti-charmed baryon with H1
- Signal checks and signal assessment
- $\boldsymbol{\cdot}$ Summary of $\boldsymbol{\Theta}_{c}$ searches
- Conclusions

The HERA accelerator

Kinematic regimes

Scattered e detected: $Q^2 > 1 \text{ GeV}$ Electroproduction (DIS) Scattered e not detected: $Q^2 \sim 0 \text{ GeV}$ Photoproduction

In the focus of HERA: Strong interactions

HERA is <u>the</u> machine for precision measurements/tests of strong interactions (QCD)

David J. Gross

RGE has negative β

H. David Politzer

Frank Wilczek

Gluon self coupling \Rightarrow <u>Asymptotic freedom</u>

Gluon emission \Rightarrow Scaling violation

Physics at HERA (I)

Physics at HERA (II)

Charm physics at HERA (I)

Heavy quark mass:

Charm is not a constituent of the proton

copious production from gluonsin the proton

√ charm production is dominated By Boson Gluon Fusion (BGF)*

 $\gamma g \rightarrow c \bar{c} (b \bar{b})$

* LO QCD

Charm physics at HERA (II)

Charmed pentaguark search

Inspired by the evidences for the strange pentaquark $\,\Theta^{\star}\,$ from K^{\star}n and K^{0}{}_{s}p analyses

Why not a charmed pentaquark ?

⊕+ formation may be due to features of the QCD vacuum (fragmentation process)

The H1 detector

Golden channel $D^{*+} \rightarrow D^0 \pi , \rightarrow (K\pi)\pi$,

(low BR but clean signal) M(D*)-M(D⁰) = 145.4 MeV Q-value only 6 MeV

Mass difference technique: $\Delta M_{D*} = M(K\pi\pi_s) - M(K\pi)$

Good Signal/Background

3400 D*'s in DIS to start with

Non charm induced background "wrong charge D" : fake D⁰ (K⁺ π^+ / K⁻ π^-)+ π_5

96-00 data 75 pb⁻¹ DIS: Q²>1 GeV²

Proton selection

Use dE/dx for background suppression

Opposite sign D*p mass distribution

narrow resonance at M=3099 \pm 3(stat.) \pm 5 (syst.) MeV

signal visible in different data taking periods

Signal in both $D^{*-}p$ and in $D^{*+}\overline{p}$

 25.8 ± 7.1 Events

 23.4 ± 8.6 Events

Signal of similar strength observed for both charge combinations at compatible M(D*p)

Signal in like sign D*p combinations?

Typical D*p candidates

Is the D*-p¹ signal due to protons?

Physics changes on-resonance?

 Single particle momentum spectra are steeply falling
 →This feature is preserved in the combinatorial background of invariant mass analyses

Harder spectrum for particles from decay due to mass release

Harder spectrum for particles from decay of charmed hadrons – due to hard charm fragmentation

Physics changes on-resonance?

Physics changes on-resonance?

Kinematic tests

2-Body Decay

$$M^{2} = (P_{1} + P_{2})^{2}$$
$$= (m_{D^{*}}^{2} + m_{X}^{2} + 2E_{D^{*}}E_{X} - 2\vec{p}_{D^{*}}\vec{p}_{X})$$

Mass M independent of decay angle Θ^* only for correct mass assignment

Monte Carlo expectation

Kinematic tests

2-Body Decay

$$M^{2} = (P_{1} + P_{2})^{2}$$
$$= (m_{D^{*}}^{2} + m_{X}^{2} + 2E_{D^{*}}E_{X} - 2\vec{p}_{D^{*}}\vec{p}_{X})$$

Mass M independent of decay angle ⊕* only for correct mass assignment

Band like structure visible in the M(D*p)-M(D*x) plane in data?

Monte Carlo expectation

Kinematic test: D^*p vs. $D^*\pi$

D*p in photo-production

Photo-production more difficult due to large non-charm background but independent confirmation of the signal Karin Daum Bad Honnef, January 18, 2005

Significance estimate

Difference in likelihood of background and signal+background fit: $\sqrt{2}\Delta \log \mathcal{L} = 6.2\sigma$ (Test independent of peak position)

Karin Daum

Results of θ_c searches

H1 observation in ep $\rightarrow c\overline{c} X$ R($\Theta_c \rightarrow D^*p/D^*$) = 1.46±0.32 % (uncorrected)

prelim.

Negative results for θ_c from:

	ALEPH	e⁺e⁻	\rightarrow	$Z^0 \rightarrow 0$	cc	
	FOCUS	γN	\rightarrow	c <u>c</u> X		
	CDF	pp	\rightarrow	cc X		
	BELLE	e⁺e⁻	\rightarrow	Y (4s)	$\rightarrow B^{0}\overline{B}^{0}$	Not contradicting H1
$B(B^{0} \rightarrow$	$\Theta_{c} p \pi$)×B($\Theta_{c} \rightarrow D$	* p)/	B(@	$\Theta_{c} \rightarrow D'$	`pp π)<11%	@ 90% C.L.
	ZEUS	ер	\rightarrow	c c X		
Different physics processes investigated						
Physics seen by ZEUS should be directly comparable to H1						

Search for charmed PQ, $\theta_c \rightarrow D^*p$, in ZEUS

1995-2000 data, 127 pb⁻¹ Selection of D*, p close to H1 cuts 30 25

DIS (Q²>1 GeV): 5920 \pm 90 D*'s γp (Q²<1 GeV):11670 \pm 140 D*'s

No signal seen in D*p

Limits on Θ_c/D^* for DIS:

 $R(\Theta_c \rightarrow D^*p/D^*) < 0.51\%$ @95% C.L.

- Includes some systematic uncertainties
- But selection different from H1
- Assumes production mechanism of Θ_c to be the same as for D*

H1 vs. ZEUS observation -What does it mean?

- H1: $R(\Theta_c \rightarrow D^*p/D^*) = 1.46 \pm 0.32$ % in DIS observed prelim.
- ZEUS $R(\Theta_c \rightarrow D^*p/D^*) < 0.51\% @ 95\%$ C.L. in DIS with corrections
- ⇒Numbers are not consistent, but
 - different selection
 - different triggers:
 - ZEUSDIS events: only ~40% are from the DIS triggerH1DIS events:100% are from the DIS trigger
 - \Rightarrow different phase space explored by H1 and ZEUS
- O_c and D* production mechanism may be different at HERA (as suggested by the Θ⁺/K⁰_s yields observed by ZEUS)
- \Rightarrow We have to understand more about $\Theta_{\rm c}$ production

Conclusions

 Evidence for a neutral anti-charmed baryon state decaying to D*p in deep inelastic scattering from H1

- Signal due to D* mesons and protons
- Harder proton spectrum in the signal region as expected for secondaries from the decay of charmed hadrons
- Kinematic tests agree only with the D*p hypothesis
- Independent confirmation from photo-production
- Poissonian background fluctuation probability <4.10⁻⁸
- Searches from ZEUS for D*p yield negative results

Situation unclear - more understanding of D*p production dynamics needed

Backup Slides

Remarks on ALEPH

R_b ≈22%, R_c ≈17% D* @ LEP are produced predominantly by beauty <×_E>_{cc} ≈0.488 In case of $\Theta_{c} \rightarrow D^{*}p$: <x_E>_{cc} ≈0.32 D* selection may not be appropriate for Θ_{c} Likely that possible Θ_{c} is cut out by D* selection No Θ_{c} Monte Carlo used for $\Theta_r \rightarrow D^*p/D^*$ yields

D* signals for different x_E

Bad Honnef, January 18, 2005

Remarks on FOCUS

Remarks on CDF

Charm production via gluon gluon fusion Similar to BGF at HERA Depends quadratically on the gluon density

No details on the analysis obtainable e.g. effect of trigger D* selection ...

CDF used a Monte Carlo for Θ_c signal estimation but model completely wrong: elastic J/ Ψ production decaying to D*p

Remarks on e⁺e⁻ data

 Production baryons and light nuclei in high energy processes not understood

e.g. anti-deuteron production: H1 γp : $\overline{d}/\overline{p} = (5.0\pm1.0\pm0.5)\cdot10^{-4}$ RHIC Au-Au: $\overline{d}/\overline{p} = 2 \cdot10^{-3}$ LEP e⁺e⁻: $\overline{d}/\overline{p} < 1.6 \cdot10^{-4}$

Anti-deuteron production (6 quarks) strongly process dependent Could be similar for pentaquarks

Possible signature of the charmed pentaguark

But what is experimentally feasible ?

Details of fit

All Checks (I)

check events

.signal events scanned visually: no anomalies

- double entries ?
 - 1.) Within +- 24 MeV around peak: 1 double entry
 - 2.) All M(D*p) < 3.6 GeV: 1.12 entries / event

signal from D*,p?

- backward D* analysis: signal region D* rich
- well identified protons (p<1.2, hard dE/dx): signal there average norm. likelihood in signal region <L_p>=0.92 physics in signal and bgr region?
- physics on/off resonance: proton spectrum harder on resonance

peak stable?

- signal present in subsamples (in Q², x, y, η , p_t, data taking period)
- variations of binning and selection: mass, width stable
- signal present in photoproduction

All Checks (II)

signal from bgr or from D*, protons?

- wrong charge D bgr instead of real D*: no peak
- D* sidebands instead of $\Delta M(D^*)$ signal window: no peak
- K, π selected (via dE/dx) instead of protons (p-mass assigned): no peak

. K π combinations with masses above region where charm contributes: no peak

check reflections

- $\mbox{.}\ \mbox{protons}$ assigned K, π mass: no peak
- Invariant masses m(pK), m(p π), m(p π _s) and all other possible 2-particle masses: no res. structures
- reflections from D₁⁰, D₂^{0*}: expected contribution (MC): 4 events (±24MeV)
- Signal due to $D^{*0} \rightarrow D^0 \gamma \rightarrow D^0 e^+ e^-$? no (electrons misidentified as πs and proton)

D* signal in DIS and photoproduction

- DIS cleaner signal
 photoproduction: supporting evide
- photoproduction: supporting evidence

Acceptance effects?

Karin Daum

 $M(D^*p) = m(K\pi\pi p) - m(K\pi\pi) + M_{PDG}(D^*)$

Reflections from decays to $D^*\pi$?

Could signal be due to decay $D^{0*} \rightarrow D^{0}\gamma$?

0.8 m_{ee}(π,p) $D^{0*} \rightarrow D^0 \gamma \rightarrow D^0 e^+e^-$ electrons from γ -conversion . asymmetric in energy misidentified as proton and π_s ? 0.6 0.4 . . ----. . 0.2 • . . 누ㅁㅁ юп - -_ _ _ 3.2 3.4 3.6 3.8 з No accumulation at small m_{ee} $m(D^{T}p)-m(D^{T})$ D*p signal region or elsewhere

Non observation at ZEUS

Lots of further kinematic test

- Reflections from a possible signal in D*K mass distribution: ruled out
- Possible contributions from $D^{*0} \rightarrow D^0 \gamma$ with γ -conversion: ruled out
- Possible contributions from $D_{S1} / D_{S2} \rightarrow D^0 K$: ruled out
- Possible peak structures in all possible mass correlations with all possible mass hypotheses of the particles making the D* and the D*p system to search for real or fake resonances, e.g Λ, Δ⁰, Δ⁺⁺, K⁰_S, φ, f² no enhancements found
- Possible peak structures in all possible mass correlations among the proton candidate the remaining charged particles of the event with all possible mass assignments to search for real or fake peaks,

no enhancements found

Remarks on D*p searches at LEP

D* signals for different x_E

 $R_b \approx 22\%$, $R_c \approx 17\%$

D* @ LEP are produced predominantly by beauty

 D^* acceptance vs. x_E ?

Bad Honnef, January 18, 2005

Remarks on D*p searches at LEP

R_b ≈22%, R_c ≈17%

D* @ LEP are produced predominantly by beauty

<×_E>_{cc} ≈0.488

Remarks on D*p searches at LEP

D* from D*p and direct D* at HERA

D*'s from D*p significantly softer than normal D*'s Should also hold for LEP !

Physics at Hera

Search for charmed PQ, $\theta_c \rightarrow D^*p$, in ZEUS

Photoproduction

- ZEUS inclusive D* sample 1995-2000: ~43000 D*
- same D*, p and D*p cuts as for DIS selection

Bad Honnef, January 18, 2005

Significance estimate

Background fluctuation probability: 4×10^{-8} (Poisson)=5.4 σ (Gauss)