R. Yoshida (Argonne)

Krakow Jan. 2005

Pentaquark searches at ZEUS

- 1. $\Theta \rightarrow K_{sp}$: Many fixed target experiments report $\Theta^{+} \rightarrow K^{+}n$ (and K_{sp}) at ~ 1530 MeV
- 2. $\Xi_{3/2} \rightarrow \Xi \pi$: NA49 reports exotic $\Xi_{3/2}$ at ~1860 MeV
- 3. $\Theta_c \rightarrow D^*p$: H1 reports $\Theta_c \rightarrow D^*p$ at 3099 MeV

- Θ⁺ → K⁺n is a manifestly exotic state (uudds).
 Observed mass ~1530 MeV.
- $\Theta \rightarrow K_{sp}$ is not manifestly exotic. Can be interpreted as a Σ^* (uudds).
- K_Sp spectrum has many reported "Σ bumps" (observed by experiments at low significance). 1480 MeV (near threshold), 1560 MeV, 1580 MeV,...
- A "window" exists 1500→1550 MeV where no states are reported.
- A narrow state at ~1530 MeV in K_sP would be consistent with the exotic Θ^+ .

The search is made in Deep Inelastic Scattering sample: ~121 pb⁻¹, the entire HERA I sample.

electron (triggers event without bias)

MC studies: (produce Θ in the same way as baryons in fragmentation)

At Q² ≈10GeV² or larger,

Ø/event≈const

Ø/bgd≈const

As $Q2 \rightarrow 0$

Θ/event↓

Θ/bgd

 $\Theta \rightarrow K_{s}p$

Determine cross-section using MC (Σ^+ forced to be Θ^+)

Cross-section ratio to the Λ (1116) determined using $\Lambda \rightarrow p\pi$ mode.

 $\Lambda(1520) \rightarrow K^+p$ has very different kinematic selections due to the use of dE/dx for both K and p.

- A state at 1521.5 ± 1.5 MeV and width $\Gamma = 8 \pm 4$ MeV observed in 121 pb⁻¹ of DIS sample in the K_sp spectrum at Q²>20 GeV².
- The significance is 3.9-4.6σ (exact number cannot be determined due to the unknown background shape.)
- Interpretation:
 - Same state as Θ⁺ pentaquark observed elsewhere. Then:
 - First observation in fragmentation
 - First observation of the anti-pentaquark
 - A so-far-unobserved Σ^* .
 - Structure due to some interference. (Reflections from known states were checked and ruled out)

 $\Xi_{3/2} \rightarrow \Xi \pi$

NA49 has reported the observation of doubly charged decuplet partner of the Θ , the $\Xi_{3/2}$ as well as the $\Xi_{3/2}^{0}$.

ZEUS has searched for this state in the same 121 pb⁻¹ DIS sample as for the Θ search.

First reconstruct Λ using dE/dx to ID protons.

Combine Λ with π to reconstruct Ξ

ZEUS

No peaks observed in any of the combinations.

$\Xi_{3/2} \rightarrow \Xi \pi$

- No $\Xi_{3/2}$ state was observed.
- The number of ±(1530) observed in this study is about the same as for the NA49 study.
- The ratio R=N(Ξ_{3/2})/N(Ξ(1530)) around 1860 MeV is <0.29 at 95% C.L.
- Since this is a search in the fragmentation region—does not necessarily contradict the NA 49 result.

- H1 collaboration has reported an observation of a narrow state $\Theta_c \rightarrow D^*p$ at 3099 MeV in DIS.
- The signal corresponds to ~1% of the observed number of D*s (51±11 Θ_c s observed)
- H1 also reports a compatible state observed in photoproduction (Q2≈0).

- ZEUS has made a search in 126 pb-1 of DIS and photoproduction data.
- Both K2 π and K4 π decay modes of D* were used. (H1 uses K2 π only).
- Altogether, 62600 D*s are found. 13500 in DIS alone. If 1% of D*s came from Θ_c -expect >600 Θ_c s.

 dE/dx was again used to identify protons.

 Procedure was somewhat refined use x2 probability of a proton hypothesis rather than a simple cut.

Default selection

- K2 π and K4 π
- $-1.6 < \eta(D^*) < 1.6$
- P_T(D*) > 1.35 GeV (for K2π)
- y < 0.95

Note all cuts are tighter for the "H1" selection.

"H1" selection

- K 2π only
- $-1.5 < \eta(D^*) < 1.0$
- For DIS
 - 0.05 > y > 0.7
 - P_T(D*) > 1.5 GeV
- For Photoprod.
 - 0.2 > y > 0.8
 - P_T(D*) > 2.0 GeV
- ..other minor changes

H1 selection

- No resonance structure observed from >60k D*s.
- "1%" signal is ruled out at 9σ for all and 5σ for DIS only.
- (Also checked Q²>20 GeV²—nothing was found)
- The upper limit of observed D*s originating from Θ_c is 0.23% (95% C.L.)
- After acceptance correction: (assuming $P_T(\Theta_c)$ and $\eta(\Theta_c)$ same as those of D*): the upper limit of D*s, in the measured kinematic region, originating from Θ_c is 0.16% (95% C.L.)
- These results are incompatible with the H1 result.

Summary

- 1. $\Theta \rightarrow K_{sp}$: A narrow state observed at 1520 MeV at Q²>20 GeV². Maybe the Θ^{+} pentaquark.
- 2. $\Xi_{3/2} \rightarrow \Xi \pi$: No state is observed. May still be compatible with NA49 result—fragmentation region probed.
- 3. $\Theta_c \rightarrow D^*p$: No state is observed. A production at 1% of the D* rate is ruled out. Not compatible with H1 result.