evidence for an anti-charmed baryon state

Christiane Risler, DESY on behalf of the H1 collaboration

Outline:

- Deep inelastic scattering at HERA
- Charm production
- Search for an anti-charmed baryon state
- Signal checks and significance estimate
- Summary

The HERA accelerator

Deep-inelastic scattering (DIS) kinematics

DIS kinematics: pairs of Lorentz invariants: • 4-momentum transfer squared $Q^2 = -q^2$ • Bjorken scaling variable: momentum fraction of proton carried by quark $x = Q^2/(2 q P)$ • inelasticity y = qP/kP• mass of the hadronic system $W^2 = (P + q)^2$

E_e=27.6 GeV E_p=920 (820) GeV √s ≈300-320 GeV

Kinematic regimes:

• Q² > 1 GeV²: DIS

scattered e in detector

• $Q^2 < 1$ GeV²: Photoproduction, γp scattered e in beampipe

Physics at HERA

Main aim: structure of the proton and precision tests of strong interactions (QCD)

properties of QCD:

- scaling violations
- asymptotic freedom

→ Nobel prize 2004 "for the discovery of asymptotic freedom in the theory of strong interactions" D.J. Gross,H.D.Politzer, F. Wilczek

Christiane Risler

Epiphany Conference, Cracow, Jan 6-8 2005

Charm Production at HERA

heavy quark mass: charm no constituent of the proton in our kinematic range

 \rightarrow copius production from gluon in the proton

charm production is dominated by Boson Gluon Fusion (BGF) in LO : $\gamma g \rightarrow cc (bb)$

Charm Production at HERA (II)

Charm contribution to total cross section

ratio of structure functions: F_2^{cc}/F_2 large, going up to ~30 %

HERA is a charm factory

Christiane Risler

Epiphany Conference, Cracow, Jan 6-8 2005

Search inspired by evidence for exotic narrow resonances in K+n = candidates for strange pentaquark state θ +

Why not charm?

Assume: θ + produced by fragmentation from vacuum

- features of QCD vacuum are universal
- QCD is flavour blind

expect similar properties as for θ + for a charmed pentaquark

look for exotic baryonic charm resonance e.g. combine charm meson with baryons e.g. D* with protons

H1 detector at HERA

D* signal

Proton selection

Particle identification via energy loss dE/dx

Resolution for mininal ionizing particles ~8%

most probable dE/dx: phenomenological parameterisation (Bethe Bloch)

combining D* mesons and protons

 $\Delta M(D^*)$ mass window: ±2.5 MeV

Now we have: resonstructed D* mesons and protons (from dE/dx) what do we get if we combine them?

opposite sign D*p invariant mass distribution

Signal in both D*-p and in D*+ \bar{p}

Signal visible in both charges D*-p and in D*+p with similar strength and compatible mass charm and non-charm bgr:

- no enhancement in D* Monte Carlo
- no enhancement in wrong charge D

Background well described by D* MC and "wrong charge D" from data

Signal visible also in like sign D*p ?

Christiane Risler

Epiphany Conference, Cracow, Jan 6-8 2005

Signal visible also in like sign D*p ?

Christiane Risler

Epiphany Conference, Cracow, Jan 6-8 2005

Signal faked by reconstruction problem?

Typical D*p candidates:

All signal events visually scanned – no anomalies

Signal faked by reconstruction problem?

Typical D*p candidates:

All signal events visually scanned – no anomalies

No!

Does resonance come from protons?

- p(p) < 1.2 GeV
- dE/dx > 1.15

• good dE/dx particle identification Signal is there for well identified protons

Christiane Risler

Epiphany Conference, Cracow, Jan 6-8 2005

Does resonance come from protons?

Epiphany Conference, Cracow, Jan 6-8 2005

Christiane Risler

•single charged particles: momentum spectrum steeply falling! preserved in combinatorial bgr

- Particles from decay:
- Lorentzboost
- particles may be emitted in direction of flight

Harder momentum spectrum expected for particles from decay

 $\gamma p, Q^2 < 1 GeV^2$

- Total: 4900 D*
- D*p peak at the same mass in γp
- larger bgr than in DIS non-charm bgr dominant (95%) well described by wrong charge D
- no enhancement in non-charm bgr

non-charm bgr dominant

no enhancement in wrong charge D

independent confirmation of the signal

Signal significance

Entries per 10 MeV

events in signal region: 95

signal+background fit:

mass:

 $3099 \pm 3(stat) \pm 5(syst.)$ MeV width: 12 ± 3 MeV (cons. with exp. resolution) Numbers of signal and bgr Nb=45.0 \pm 2.8

(within ± $2\sigma = \pm 24 MeV$) N_s=50.6 ±11.2

 $(1.46 \pm 0.32 \% \text{ of } D^* \text{ yield},$ uncorrected in acceptance)

Background fluctuation probability (52 \rightarrow 95) : 4 x 10⁻⁸ (Poisson) 5.4 σ (Gauss)

Summary

- evidence for a neutral anti-charmed baryon state decaying to D*p in deep-inelastic scattering
- signal is due to D* and protons
- harder proton momentum spectrum observed in the signal region than in sidebands as expected for decay
- Independent confirmation of signal in photoproduction
- probability for signal due to background fluctuation: 4 x 10⁻⁸ (Poisson) corresponding to 5.4 σ (Gauss)
- •directly comparible experiment: ZEUS controversy between ZEUS and H1 not settled

Backup slides

Details of fit

All Checks (I)

check events

•signal events scanned visually: no anomalies

- double entries ?
 - 1.) Within +- 24 MeV around peak: 1 double entry
 - 2.) All M(D*p) < 3.6 GeV: 1.12 entries / event

signal from D*,p?

- backward D* analysis: signal region D* rich
- well identified protons (p<1.2, hard dE/dx): signal there average norm. likelihood in signal region <Lp>=0.92

physics in signal and bgr region?

• physics on/off resonance: proton spectrum harder on resonance

peak stable?

- signal present in subsamples (in Q², x, y, η , pt, data taking period)
- variations of binning and selection: mass, width stable
- signal present in photoproduction

All Checks (II)

signal from bgr or from D*, protons?

- wrong charge D bgr instead of real D*: no peak
- D* sidebands instead of $\Delta M(D^*)$ signal window: no peak
- K, π selected (via dE/dx) instead of protons (p-mass assigned): no peak

• $K\pi$ combinations with masses above region where charm contributes: no peak

check refelections

- protons assigned K, π mass: no peak
- Invariant masses m(pK), m(pπ), m(pπ_s) and all other possible
 2-particle masses: no res. structures
- reflections from D₁⁰, D₂^{0*}: expected contribution (MC):

4 evts (±24MeV)

• Signal due to $D^{*0} \rightarrow D^0 \gamma \rightarrow D^0 e^+ e^-$? no (electrons misidentified as π s and proton)

D* signal in **DIS** and photoproduction

- DIS cleaner signal
- photoproduction: supporting evidence

 $M(D^*p) = m(K\pi\pi p) - m(K\pi\pi) + M_{PDG}(D^*)$

Reflections from decays to D^*\pi?

Epiphany Conference, Cracow, Jan 6-8 2005

Christiane Risler

Reflections from decays to $D^*\pi$ **?**

 $D_1^0, D_2^{0*} \to D^*\pi$

Could signal be due to decay $D^{0*} \rightarrow D^0 \gamma$?

Non observation at ZEUS

