Forward Jet Production in DIS

OUTLINE:

N. Vlasov

On behalf of the ZEUS Collaboration

XIII International Workshop on Deep Inelastic Scattering

April 26 - May 1, 2005

Madison, Wisconsin, U.S.A.

 \Box QCD Dynamics at Low x

□ MC Modes and QCD Calculations

□ Inclusive Forward Jet Measurement with ZEUS data 95-97

□ Inclusive Forward Jet Measurement with ZEUS data 98-2000

Conclusions

QCD Dynamics at Low *x*

• **DGLAP** (**D**okshitzer-**G**ribov-**L**ipatov-**A**ltarelli-**P**arisi) is expected to break down at low *x* and Q² region

- BFKL (Balitsky-Fadin-Kuraev-Lipatov) can be applicable at low x
- **CCFM** (Ciafaloni-Catani-Fiorani-Marchesini) describes an evolution in both Q^2 and x and approches BFKL at low x and DGLAP at high Q^2 ; angular ordering

MC Models and QCD Calculations

- **DISENT**: Fixed order QCD partonic cross section, on mass shell ME + DGLAP
- LEPTO: LO ME+PS , (DGLAP)
 - Strong ordering in k_T
- ARIADNE: LO, an implementation of Color Dipole Model (CDM)
 - Independently radiating dipoles formed by quarks and emitted gluons
 - Random walk in k_T like in BFKL

- CASCADE: LO off mass shell ME + parton shower based on k_T factorized CCFM evolution model
 - Angular ordering in parton emission
 - Unintegrated gluon densities fits J2003 set 1 (with new treatment of soft region) and J2003 set 2 (fit form includes non singular terms)

Inclusive Forward Jet Measurements

4

Inclusive Forward Jet Measurement (DESY-05-017)

- NLO gives a good description of E_T^{jet} dependence
- Discrepancy between data and NLO in the forward region $1.5 < \eta^{jet} < 3$; this region is more sensitive to higher order radiations (estimation of uncertainty from higher orders is large)

Inclusive Forward Jet Measurement (DESY-05-017)

ZEUS

- NLO predictions lower than data at low x_{Bj} but still within theoretical uncertainties. Gives a good description of Q² dependence
- CDM describes all measured cross sections
- ME+PS: LEPTO (DGLAP) fails for low x_{Bj} and Q^2

Forward Jet Measurement with Forward Plug Calorimeter (FPC)

- Forward Plug Calorimeter in the 20 x 20 cm² beam hole of FCAL for 98-2000
- Lead-scintillator sandwich with 60 EMC and 16 HAC cells
- Extend calorimeter acceptance by about 1 unit in pseudorapidity to $\eta \le 5$

Inclusive Forward Jet Measurement

Measurement extended to 2<η^{jet}<3.5

- CASCADE *set1* disagrees with all cross sections
- CASCADE *set2* is in a good agreement with data in Q² and E_T^{jet} but fails to reproduce the shapes of x_{Bj} and η^{jet}
- CDM (ARIADNE) gives a good description of data in all measured cross sections
- LEPTO underestimates data by a factor of 2

29/04/2005

N.Vlasov, Forward Jets in DIS

Inclusive Forward Jet Measurement

- Average hadronisation correction obtained with LEPTO and ARIADNE
- Proton PDF CTEQ5D
- NLO predictions lower than data but within theoretical uncertainties (except very low x_{Bj})
- Theory has too large uncertainty
- No disagreement with NLO DGLAP has been observed for forward jets

29/04/2005

N.Vlasov, Forward Jets in DIS

Conclusions

Parton dynamics at low-x has been studied in forward jet production in DIS by ZEUS

□ CDM (ARIADNE) gives a good description of data in all measured cross sections

□ Lowest-order DGLAP calculations fail to describe forward jet cross sections

□ LO CCFM-based CASCADE does not describe shapes of forward jet cross sections

□ NLO calculations fail to describe data at low Bjorken-x but the agreement is good for very forward jets within theoretical uncertainties

Large renormalisation uncertainty does not permit more detailed comparison