Madison, DIS 2005

April 27th, 2005

COLOR DYNAMICS IN PHOTOPRODUCTION OF JETS AT HERA

Juan Terrón (Universidad Autónoma de Madrid, Spain)

Color Factors

• The color factors (C_F, C_A, T_F) represent the relative strength of the processes

- Their values are predicted by the underlying gauge-group structure \rightarrow for SU(N): $C_F = (N^2 1)/2N, C_A = N, T_F = 1/2$
- The color factors determine the relative contributions of the various subprocesses \rightarrow e.g. in $e^+e^- \rightarrow 4$ jets the contributions from $q\bar{q}gg$ and $q\bar{q}q'\bar{q}'$
- Since the couplings qqg and ggg have different spin structures, the color factors give rise to a specific pattern of angular correlations between the final-state jets

Color Factors

• The effects of color factors have on (%) been extensively studied at LEP by measuring the angular correlations between the final state jets in $e^+e^- \rightarrow 4$ jets

 $e^+e^- \rightarrow 4$ jets 10 (e.g. using the Bengtsson-Zerwas variable χ_{BZ} : angle between nº the plane of jets 1-2 and that of jets 3-4) \Rightarrow Determination of the ratios C_A/C_F and T_F/C_F

• In *ep* collisions at HERA, the effects of the color factors are expected in the photoproduction of three-jet events

40

30

20

L3

20°

40°

 χ_{BZ}

• DATA

abelian

80°

60°

Photoproduction of Jets

- Production of jets in γp collisions has been measured via ep scattering at $Q^2 \approx 0$
- At lowest order QCD, two hard scattering processes contribute to jet production \Rightarrow
- pQCD calculations of jet cross sections

$$\sigma_{jet} = \sum_{a,b} \int_0^1 dy \ f_{\gamma/e}(y) \int_0^1 dx_\gamma \ f_{a/\gamma}(x_\gamma,\mu_{F\gamma}^2) \int_0^1 dx_p \ f_{b/p}(x_p,\mu_{Fp}^2) \ \hat{\sigma}_{ab
ightarrow jj}$$

longitudinal momentum fraction of $\gamma/e^+(y)$, parton $a/\gamma(x_{\gamma})$, parton $b/\text{proton}(x_p)$ $\rightarrow f_{\gamma/e}(y) = \text{flux of photons in the positron (WW approximation)}$ $\rightarrow f_{a/\gamma}(x_{\gamma}, \mu_{F\gamma}^2) = \text{parton densities in the photon (for direct processes <math>\delta(1 - x_{\gamma})$)} $\rightarrow f_{b/p}(x_p, \mu_{Fp}^2) = \text{parton densities in the proton}$ $\rightarrow \sigma_{ab \rightarrow jj}$ subprocess cross section; short-distance structure of the interaction

Color Factors: Direct vs Resolved Processes

- <u>Resolved processes (dijet)</u>: the triple-gluon-vertex contribution already appears in the production of dijet events → not a distinct feature in the final state jets
- <u>Resolved processes (trijet)</u>: new color factors contribute to the production of three-jet events \rightarrow a rather complex situation to disentangle the effects of $C_F, C_A, ...$
- Direct processes (trijet): sensitive to the colour factors C_F , C_A and T_F through the angular correlations between the final-state jets (clean!)
- Observable to separate resolved/direct $\Rightarrow \left| x_{\gamma}^{obs}(3 ext{jets}) = rac{1}{2E_{\gamma}} \sum_{\mathrm{i}=1}^{3} E_{T}^{jet_{i}} e^{-\eta^{jet_{i}}} \right|$

J Terrón (Madrid)

April 27th, 2005

Photoproduction of Three-Jet Events

• <u>Direct processes</u> provide a clean way to study the effects of the different color configurations

• The predicted cross section at $\mathcal{O}(\alpha \alpha_s^2)$ can be written as

$$\sigma_{ep \rightarrow 3 ext{jets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

Photoproduction of Three-Jet Events

- <u>Variables</u> to highlight the contributions from the different color configurations
 - \Rightarrow angular correlations between the jets
- $\rightarrow \theta_H$, the angle between the plane determined by the highest E_T^{jet} and the beam and the plane determined by the two lowest E_T^{jet} jets (Muñoz-Tapia, Stirling);
- $\rightarrow \alpha_{23}$, the angle between the two lowest E_T^{jet} jets; (inspired by the variable $\alpha_{34}^{e^+e^-}$ for $e^+e^- \rightarrow 4$ jets)

 $\rightarrow eta_{KSW}$, defined by

 $\cos \beta_{KSW} = \cos \frac{1}{2} [\angle [(\vec{p_1} \times \vec{p_3}), (\vec{p_2} \times \vec{p_B})] + \angle [(\vec{p_1} \times \vec{p_B}), (\vec{p_2} \times \vec{p_3})]],$ where $\vec{p_i}$ is the momentum of jet i (ordered according to decreasing E_T^{jet}) and $\vec{p_B}$ is a unit vector in the direction of the proton beam; (inspired by the Körner-Schierholz-Willrodt angle $\Phi_{KSW}^{e^+e^-}$ for $e^+e^- \rightarrow 4$ jets) **Measurements of Three-Jet Events in Photoproduction**

- Measurements using HERA I data: $\mathcal{L} = 127 \text{ pb}^{-1}$
- Jets identified using the longitudinally invariant k_T cluster algorithm in the laboratory frame: at least three jets with $E_T^{
 m jet} > 14$ GeV, $-1 < \eta^{
 m jet} < 2.5$
- Kinematic region: $Q^2 < 1 \text{ GeV}^2$ and 0.2 < y < 0.85

Measurement of the Distribution in θ_H

• Measurement of the normalised cross section $1/\sigma \ d\sigma/d\theta_H$ for the production of events with three jets satisfying $E_T^{\text{jet}} > 14 \text{ GeV}, -1 < \eta^{\text{jet}} < 2.5$ and $x_{\gamma}^{\text{obs}}(3\text{jets}) > 0.7$ in the kinematic region $Q^2 < 1 \text{ GeV}^2$ and 0.2 < y < 0.85

• Comparison to the predictions of PYTHIA and HERWIG (leading-logarithm parton-shower calculations based on SU(3))

- \rightarrow PYTHIA reproduces reasonably well
 - the measured distribution
- ightarrow The distributions for direct and resolved processes ($\sim 34\%$) are very similar

Measurement of the Distributions in α_{23} and β_{KSW}

- \rightarrow The distributions for direct and resolved processes are similar
- Experimental uncertainties: the statistical uncertainties are dominant

Fixed-order Calculations for the Photoproduction of Three-Jet Events

- Fixed-order $(\mathcal{O}(\alpha \alpha_s^2))$ calculations using the program by Klasen, Kleinwort and Kramer
- \rightarrow direct processes only
- ightarrow choice of scales: $\mu_R = \mu_F = E_T^{
 m max}$ (highest $E_T^{
 m jet}$)
- \rightarrow proton PDFs: MRST99 parametrisations
- Parton-to-hadron corrections estimated with PYTHIA \Rightarrow small effect on the angular distributions (< 5%)
- Small theoretical uncertainties
- \rightarrow higher-order terms (by varying μ_R)
- \rightarrow uncertainties on the proton PDFs

• The program has been modified to allow the calculation for given input values of the color factors (C_F, C_A, T_F) :

 $\sigma_{ep \to 3jets} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$

• Example: the distribution in θ_H for the contribution σ_B (term with $C_F \cdot C_A$) is particularly distinct from the other color configurations due to diagrams \rightarrow

Measurements vs Fixed-order Calculations (Contributions)

• The contribution σ_B (term with $C_F \cdot C_A$) exhibits a very different shape than the other contributions in all three distributions ($\theta_H, \alpha_{23}, \beta_{KSW}$)

- The other contributions are better separated by the distribution of α_{23}
- The predicted relative contributions for SU(3):

A $(C_F^2) \rightarrow 13\%$, B $(C_F C_A) \rightarrow 10\%$, C $(C_F T_F) \rightarrow 45\%$, D $(T_F C_A) \rightarrow 32\%$

Measurements vs Fixed-order Calculations (Complete)

• Comparison to fixed-order calculations based on differente symmetry groups SU(3), SU(N) with $N \gg 1, U(1)^3$ and the extreme choice $C_F = 0$

- $U(1)^3$ vs SU(3): similar shapes due to the smallness of σ_B
- The data disfavour $T_F/C_F pprox 0 \, (SU(N \gg 1))$ or $C_F = 0$
- The predictions of SU(3) describe reasonably well the data

Summary

• Measurements of angular correlations between the final-state jets (and the beam) in the photoproduction of three-jet events

- ightarrow consistent with the admixture of color configurations predicted by SU(3)
- The measurements disfavour $T_F/C_F \approx 0$ as predicted by SU(N) with large Nor the extreme choice $C_F = 0$
- The observables θ_H , α_{23} and β_{KSW}
- \rightarrow sensitivity to $C_F \cdot C_A$, but the predicted contribution is small (10%)
- \rightarrow large contribution (32%) from $T_F \cdot C_A$, but not enough sensitivity

