Inclusive Jet Cross-Sections in Neutral Current DIS Events Using the Breit Frame

Jeff Standage
York University

... on behalf of the ZEUS Collaboration

OUTLINE

• Theoretical Motivations
• DIS Cross Sections and pQCD
• The Breit Frame
• Physics Event Reconstruction
• Jet Reconstruction
• Event Sample
• Next-to-Leading Order QCD Calculations
• Differential Cross Section Measurements (predicted, measured)
• Comparisons of Data with NLO Predictions
• Conclusions and Summary

\(\sqrt{s} = 318 \text{ GeV} \)

\[p^+ (E_p = 920 \text{ GeV}) \quad e^+ (E_e = 27.5 \text{ GeV}) \]

DIS Conference, Madison WI, 28th April 2005

Jeff Standage, York University
Jet production in Neutral Current (NC) DIS provides a test of pQCD.

These are the Feynman diagrams, up to first order in α_s, that contribute to jet production cross sections in NC DIS.

Jet cross section is given by:

$$d\sigma_{jet} = \sum_{a=q,\bar{q},g} \int dx \cdot f_a(x, \mu_F) \cdot d\hat{\sigma}_a(x, \alpha_s, \mu_R, \mu_R, \mu_F)$$

f_a represents the Parton Distribution Function (PDF).

$d\hat{\sigma}_a$ represents the calculable QCD subprocess cross sections (see above).
Inclusive Jet Cross-Sections in Neutral Current DIS Events Using the Breit Frame

Test of QCD matrix elements and colour factors.

Determination of α_s and its dependence on scale.

Inclusive cross-section for high-E_T jets $\propto \alpha_s$.

Proton PDF determination.

DIS Conference, Madison WI, 28th April 2005

Jeff Standage, York University
The Breit Frame

Breit Frame (also known as the ‘Brick Wall Frame’) is that frame in which the struck quark and exchange photon collide head on such that:

\[q + 2x_B P = 0 \]

- **P**: four-momentum of proton
- **\(x_B \)**: proportion of \(P \) carried by struck quark (q)
- **\(q \)**: four-momentum of exchange boson
The Breit Frame

- One process, which has no α_s dependence, is completely suppressed by placing a cut on E_T^B, as the struck parton has close to zero E_T^B.
- The beam remnant also has close to zero E_T^B and is likewise suppressed.

E_T^B: Energy transverse to γ^*q axis in Breit Frame.

- Hence the lowest order non-trivial contributions to the jet cross sections are due to QCD Compton ($\gamma^*q \rightarrow gq$) and BGF ($\gamma^*g \rightarrow q\bar{q}$).
- These processes are directly sensitive to QCD hard processes, i.e. α_s.

DIS Conference, Madison WI, 28th April 2005

Jeff Standage, York University
Reconstruction of Events

A DIS event can be described by a number of event variables, the most common of which are defined thus:

\[Q^2 = -q^2 = -(k - k')^2 \]
\[x = \frac{-Q^2}{2p \cdot q} \]
\[y = \frac{p \cdot q}{p \cdot k} = \frac{Q^2}{sx} \]

- \(Q^2 \) is known as the virtuality of the exchange boson.
- \(x \) is the fraction of the proton momentum that is carried by the struck parton.
- \(y \) is the inelasticity of the interaction.
- \(s \) is the (centre of mass energy)\(^2\) of the event, \(s = (318 \text{ GeV})^2 \).

Any DIS event is kinematically described if the value of any two event variables are known.

DIS Conference, Madison WI, 28th April 2005 Jeff Standage, York University
Display of a 2-jet NC DIS Event
Jet Reconstruction

- Jets reconstructed from CAL cell energy deposits boosted into the Breit Frame.
- This is done by using the k_T Cluster Algorithm.
- This is an iterative process:

 (i) For each pair of ‘deposits’, (i,j), a distance parameter, d_{ij}, is defined;
 (ii) For each ‘deposit’ a distance from the beam, d_i, is defined such that:

$$d_{ij} = \min(E_{T,i}, E_{T,j}) \cdot (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2) \quad d_i = E_{T,i}^2$$

- The minimum value of all the d_{ij} and d_i is taken:
 - If this is a d_{ij} (i.e. between two particles) then the two particles are combined to form a new ‘particle’ for the next iteration.
 The new particle parameters are found using the Snowmass convention:
 $$E_{T,\text{jet}} = \sum_i E_{T,i} \quad \eta_{\text{jet}} = \sum_i \frac{E_{T,i} \cdot \eta_i}{E_{T,\text{jet}}} \quad \phi_{\text{jet}} = \sum_i \frac{E_{T,i} \cdot \phi_i}{E_{T,\text{jet}}}$$
 - If this is a d_i, then this particle is considered a ‘jet’ and removed from the sample.

- After each iteration, the number of particles is reduced by one.
- Process continues until all particles have been assigned to a ‘jet’.

DIS Conference, Madison WI, 28th April 2005

Jeff Standage, York University
Jet Reconstruction

k_T Cluster algorithm has a number of advantages:

- It is infrared and collinear safe.
- It is not possible to get overlapping jets.
- Jet variables, E_T, η, ϕ are invariant under longitudinal boosts.
Data Sample

- e^+p data obtained by ZEUS Group during 99-00 running period.

- Luminosity: 65.1 pb^{-1}

- Events selected in the kinematic range such that:

 \[
 Q^2 > 125 \text{ GeV}^2
 \]

 \[
 -0.7 < \cos \gamma_h < 0.5
 \]

- Jets selected such that:

 \[
 E_T^B > 8 \text{ GeV}
 \]

 \[
 -2.0 < \eta^B < 1.8
 \]
Next-to-Leading Order (NLO) Calculations - Theory

- Theoretical predictions were obtained using DISENT to calculate same differential cross sections measured in data.
- PDF set: MRST99
- $\alpha_s(M_Z) = 0.1175$
- Renormalization scale: $\mu_R = E_T^B(\text{jet})$
- Factorization scale: $\mu_F = Q$

- Calculated cross sections are at the parton level, using γ^* exchange. Corrections are required because
 (i) data results are presented at the hadron (QED Born) level,
 (ii) calculations do not take account of Z0 exchange.

 Corrections are obtained using Monte Carlo simulations.
NLO - *Theoretical Uncertainties*

The overall uncertainties in the NLO predictions were estimated in the following way:

(i) Uncertainties due to terms beyond $O(\alpha_s)$ (NLO) were estimated by varying the value μ_R by a factor of two higher and lower.

(ii) Uncertainties due to the PDFs were estimated by taking into account the experimental errors of the data sets used and the theoretical assumptions in the fits.

(iii) Uncertainties due to the value of $\alpha_s(M_Z)$ were estimated by using the other two values for $\alpha_s(M_Z)$ in the MRST99 PDFs.
Inclusive Jet Cross-Sections in Neutral Current DIS Events Using the Breit Frame

Previously Published Results

Luminosity ≈ 38 pb\(^{-1}\) \quad **E_p = 820 GeV**

Physics Letters B 547
(November 2002) 164-180

DIS Conference, Madison WI, 28th April 2005
Jeff Standage, York University
Comparison of NLO Predictions for Different Proton Energies

Effect of beam energy:
- ~10% increase in differential cross section with the increased E_p.

Q^2
DIS Conference, Madison WI, 28th April 2005

$E_T(jet)$
Jeff Standage, York University
Results: Q^2

- Data points consistent with NLO prediction within the uncertainties.
- This measurement is directly sensitive to value of $\alpha_s(M^2_Z)$ and the scale dependence of α_s.
Results: $E_T^B(jet)$

- Data points consistent with NLO prediction within the uncertainties.
- This measurement is directly sensitive to value of $\alpha_s(M_Z)$ and the scale dependence of α_s.

Differential cross section with respect to $E_T^B(jet)$.

Zeus

- ZEUS (prel.) 99p – 00
- NLO QCD (corrected to hadron level)
- DISENT MRST99 ($\mu_0 = E_T^{jet}$)
- Jet Energy Scale Uncertainty

Ratio to DISENT MRST99 ($\mu_0 = E_T^{jet}$)

- Theoretical uncertainty
Results: $\eta^B(jet)$

- Data points consistent with NLO prediction within the uncertainties.
Results: Q^2 Comparison

- 99-00 result agrees with 96-97 data points within the uncertainties.
- Results consistent with NLO prediction of ~10% increase in differential cross section.
Inclusive Jet Cross-Sections in Neutral Current DIS Events Using the Breit Frame

Results: \(E_T^B(jet) \) Comparison

Differential cross section with respect to \(\eta^B(jet) \).

- 99-00 result agrees with 96-97 data points within the uncertainties.
- Results consistent with NLO prediction of 10-20% increase in differential cross section.

DIS Conference, Madison WI, 28th April 2005

Jeff Standage, York University
Summary

- Inclusive jet cross-sections have been measured for ZEUS 1999-2000 positron-proton data.

- The effect of increasing proton beam energy from 820 to 920 GeV is to increase differential cross section with respect to Q^2 by \sim10%.

- The effect on the differential cross section with respect to $E_T^B(\text{jet})$ is to increase it by \sim10% for $E_T^B(\text{jet}) \approx 10$ GeV. This effect increases steadily with $E_T^B(\text{jet})$.

- Significantly reduced statistical errors with respect to the previously published analysis.

- Results agree well with previously published analysis.

- Differential cross-sections with respect to Q^2, $E_T^B(\text{jet})$ and $\eta^B(\text{jet})$ are well-described by NLO calculations, to within experimental and theoretical uncertainties.