

Recent results on multiplicity from ZEUS

Michele Rosin

on behalf of the ZEUS Collaboration

University of Wisconsin, Madison

DIS 2005, Madison WI April 29, 2005

e⁺e⁻ & ep : Breit Frame

DIS event

- Use Breit frame to compare multiplicity for ep to e⁺e⁻
- Breit Frame definition:

2xP + q = 0

• "Brick wall frame" incoming quark scatters off photon and returns along same axis.

•Current region of Breit Frame is analogous to e⁺e⁻.

Measurement vs. Q in Breit Frame

ZEUS 1994-97

European Physics Journal C11 (1999) 251-270

Multiplicity: ep vs. e⁺e⁻ (1)

•e⁺e⁻: boson with virtuality \sqrt{s} produces 2 quarks & hadronization is between 2 colored objects q and \overline{q}

•ep: In the hard collision between the photon & quark only 1 final quark is produced, so the 2nd quark on the diagram is the incoming one

•current region of Breit frame for ep similar to one hemisphere of e⁺e⁻

Multiplicity: ep vs. e⁺e⁻ (2)

•ep: Split into Current and Target Region – one string two segments.

•In ep we have a color field between 2 colored objects the struck quark and the proton remnant

•When we use Q² as a scale we are assuming the configuration is as symmetric as it is in e⁺e⁻, but it isn't

•This asymmetric configuration leads to migration of particles from the current region to the target region

Breit Frame diagram

Gluon radiation, Q, and 2*E_{Breit}

- •In hard and soft processes gluon radiation occurs
- •These gluons can migrate to target region
- •Total energy in the current region of Breit frame and multiplicity are decreased due to these migrations (Q² is not)
- •Effect is more pronounced for low Q² : more low energy gluons

<n_{ch}> vs. 2*E_{current}

• Measurement of multiplicity dependence on $2^*E_{current}$ compared to previous ZEUS measurement vs. Q, and to e⁺e⁻ and pp data (<n_{ch}> is multiplied by 2 for comparison)

•2*E gives better description of multiplicity at lower energy

•Current region understood, would also like to compare the target region of ep to e⁺e⁻ but...

Visible multiplicity in Breit frame

...comparing the target region is not possible:

•Breit Frame: 90% of hadrons in current region visible in detector, only 30% of target region hadrons are visible

•Can't easily measure target hadrons, but these are a huge 4000 portion of the produced hadrons which we would still like to study 2000

•Need some other way to investigate these particles

Hadronic center of mass frame

Hadronic center of mass energy is W

$$W = \sqrt{(q+P)^2}$$

Visible multiplicity in HCM frame

•HCM Frame: Photon region dominated by contribution from target region of Breit frame (~80% of visible hadrons)

•Photon region HCM frame well contained in visible part of detector

Multiplicity vs. W in HCM

•Measurement of Multiplicity in photon region of HCM frame vs. W.

•Both Lepto and Ariadne describe the data: last bin slightly above

•Like to compare current region Breit frame and photon region HCM frame to e⁺e⁻

•Must multiply <n_{ch}> by 2 because both measurements are for hemispheres and e⁺e⁻ is total sphere

Multiplicity in current region of Breit and HCM frames compared to e+e- and pp

•Measurements in current region of Breit frame and photon region of HCM frame multiplied by 2.

•There is agreement with e^+e^- at low and high energy and with the pp results which are plotted vs. $\sqrt{q^2}_{had}$ (the scale with the leading particles removed)

•the HCM prediction has been extended to lower energies where a measurement isn't possible (region is outside detector acceptance) and it agrees with all the points at low energy

•One can also measure <n_{ch}> vs. the invariant mass of the corresponding hadronic system. Measure only what is visible in detector & minimize effect of acceptance correction

ZEUS

Charged Hadrons & Effective Mass: experimental method

•Measure hadronic final state within $\Delta\eta$ for best acceptance in the central 20° tracking detector (CTD)

•Measure # charged tracks, reconstruct number of charged hadrons

•Measure invariant mass of the system (Meff) in corresponding $\Delta\eta$ region.

•Energy is measured in the Calorimeter (CAL)

Study: $< n_{ch} > vs. M_{eff}$

 $M_{eff}^{2} = \left(\sum_{i \neq e'} E^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{x}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{y}^{i}\right)^{2} - \left(\sum_{i \neq e'} p_{z}^{i}\right)^{2}$

CAL within the CTD acceptance

Recent multiplicity studies at ZEUS, Michele Rosin U. Wisconsin

Lab frame: <n_{ch}> vs. M_{eff} in x bins

- •Plot shown previously at ICHEP 2004
- •Lab frame multiplicity vs. M_{eff}, shown in 4 x bins, with Ariadne predictions.
- x range split into similar bins as in previous multiplicity paper.
- weak x dependence in both data and Monte Carlo observed.
- •Q² dependence? => next slide

Lab frame: x and Q² bins

- Data described by ARIADNE
- LEPTO slightly above data
- No Q² dependence observed

Summary

•For the 1st time, the measurement of mean charged multiplicity had been extended to a higher energy scale than previously measured in ep collisions.

•Measurement in current region of the Breit frame shows similar dependence to e⁺e⁻ if 2*E_{current} is used as the scale

•The same dependence is observed for the photon region of the HCM frame vs. W.

