Diffractive Dijets in Photoproduction with the ZEUS-Experiment

Roger Renner

on behalf of the ZEUS–Collaboration

— DIS 2005 —

Madison, April 27th – May 1st, 2005

Image: A image: A

<ロ> <同> <同> <同> < 同>

Großgeräte der physikalischen Grundlagenforschung

Outline

Introduction

- LO processes
- Motivation
- Kinematics

2 Experimental setup

- Data sample, LO MC and NLO QCD calculations
- Event topology and selection

3 Results

- Data versus LO MC
- Data versus NLO QCD calculations

4 Conclusions

< ≣ >

- ∢ ≣ ▶

LO processes Motivation

LO processes

<mark>Z</mark>EUS

jet1

jet2

gap

q

q

LO processes Motivation Kinematics

Results on diffractive dijets at Tevatron

CDF dijet cross sections lower than theoretical prediction

suppression factor

< 🗇 🕨

on theoretical calculations required to account for factorisation breaking

LO processes Motivation Kinematics

Expectations for HERA

production of diffractive dijets in $p\bar{p}$ -collisions similar to resolved γ -process in ep-collisions:

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, \text{GeV}^2$

- y energy fraction of e taken by γ
- \mathbf{x}_{γ} longitudinal momentum fraction of γ taken by parton

z_{IP} longitudinal momentum fraction of the diffractive exchange taken by parton *k_{IP}* longitudinal momentum fraction

of *p* entering the diffr. exchangezeus

《曰》《圖》《문》《문》 문[日]

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \,\mathrm{GeV}^2$

- y energy fraction of e taken by γ
- \mathbf{x}_{γ} longitudinal momentum fraction of γ taken by parton

- *t_{IP}* longitudinal momentum fraction of the diffractive exchange taken by parton *t_{IP}* longitudinal momentum fraction
 - of *p* entering the diffr. exchangezeus

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- $\begin{array}{ll} y & \mbox{ energy fraction} \\ & \mbox{ of } e \mbox{ taken by } \gamma \end{array}$
 - \mathbf{x}_{γ} longitudinal momentum fraction of γ taken by parton

t_{IP} longitudinal momentum fraction of the diffractive exchange taken by parton *t_{IP}* longitudinal momentum fraction

of *p* entering the diffr. exchange

《曰》《曰》《曰》《曰》 《曰》

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

 Iongitudinal momentum fraction of the diffractive exchange taken by parton
 Iongitudinal momentum fraction of p entering the diffr. exchange

(《圖》 《문》 《문》 문법

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

resolved PhP: $x_{\gamma} < 1$

- z_{IP} longitudinal momentum fraction of the diffractive exchange taken by parton
 - longitudinal momentum fraction of p entering the diffr. exchangezeus

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

direct PhP: $x_{\gamma} \simeq 1$

- z_{IP} longitudinal momentum fraction of the diffractive exchange taken by parton
 - longitudinal momentum fraction of p entering the diffr. exchangezeus

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

- *TIP* longitudinal momentum fraction of the diffractive exchange taken by parton
- x_{IP} longitudinal momentum fraction of p entering the diffr. exchangereus

- 4 回 > - 4 回 > - 4 回 > -

문문

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

- ZIP longitudinal momentum fraction of the diffractive exchange taken by parton
- x_{IP} longitudinal momentum fraction of p entering the diffr. exchangezeus

(4回) (4回) (日)

포네크

LO processes Motivation Kinematics

Kinematics

Photoproduction: $Q^2 < 1 \, { m GeV}^2$

- y energy fraction of e taken by γ
- x_{γ} longitudinal momentum fraction of γ taken by parton

M_X hadronic mass

- Z_{IP} longitudinal momentum fraction of the diffractive exchange taken by parton
- x_{IP} longitudinal momentum fraction of p entering the diffr. exchangered egeus

- 4 回 > - 4 回 > - 4 回 > -

포네크

Data sample, LO MC and NLO QCD calculations Event topology and selection

Data sample

 $\begin{array}{ll} 99e^- {\rm p} \mbox{ and } `99/00e^+ {\rm p} \mbox{ ZEUS data} & (E_\rho = 920 \mbox{ GeV}, E_e = 27.6 \mbox{ GeV}) \\ \mbox{Total integrated luminosity } \mathcal{L} = 77.6 \mbox{ pb}^{-1} \end{array}$

LO Monte Carlo

Events generated with RAPGAP v3.00 for Q^2 , $-t < 1 \text{ GeV}^2$ Structure functions used: p: CTEQ 5M1 γ : GRV-G-HO IP: H1 fit2

NLO QCD calculations

On parton level by Klasen & Kramer [H1 2002 fit (prel.)] compared with data \triangleright with resolved PhP suppressed (R = 0.34) \triangleright with no suppression applied (R = 1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data sample, LO MC and NLO QCD calculations Event topology and selection

Event topology at ZEUS and event selection

Roger Renner

Diffractive Dijets in Photoproduction

Data versus LO MC Data versus NLO QCD calculations

Result shown at ICHEP04

cross sections vs. full x_{γ} -range shape well described resolved PhP **not** suppressed > normalisation agrees with R = 0.34resolved PhP suppressed data studied separately for $\triangleright x_{\gamma} < 0.75$ (resolved enriched) $> x_{\gamma} > 0.75$ (direct enriched) $(\rightarrow \text{next slides})$

Data versus LO MC Data versus NLO QCD calculations

Data versus LO MC

Roger Renner

Diffractive Dijets in Photoproduction

Data versus LO MC Data versus NLO QCD calculations

Data versus LO MC — ratio resolved/direct

- scaling factor cancels
- ratio well described by LO RAPGAP

< 177 ▶

글 🕨 🖌 글

크

-

Data versus LO MC Data versus NLO QCD calculations

Data versus NLO calculations — resolved enriched

$$x_{\gamma} < 0.75$$

NLO predictions

- describe shapes
- do not reproduce normalization:
 - ▷ too high for R = 1 (no suppression)
 - ▷ too low for R = 0.34 (resolved suppression)

<**□** > < ⊇ >

Data versus LO MC Data versus NLO QCD calculations

Data versus NLO calculations — direct enriched

$$x_{\gamma} \ge 0.75$$

NLO predictions

- describe shapes
- do not reproduce **normalization**:

 \triangleright too high for both models

R = 1, R = 0.34

indication of a global suppression for both direct & resolved PhP

Introduction Experimental setup Results

Conclusions

Data versus LO MC Data versus NLO QCD calculations

Data versus NLO (R=1) — ratio resolved(direct)/NLO

Roger Renner

Diffractive Dijets in Photoproduction

Data versus LO MC Data versus NLO QCD calculations

Data versus NLO (R=1) — ratio resolved/direct

ratio fairly well described by NLO (R = 1)

no indication of suppression of resolved PhP wrt. direct PhP

-

Conclusions

- ZEUS measured first <u>double differential cross sections</u> for resolved enriched PhP ($x_{\gamma} < 0.75$) for direct enriched PhP ($x_{\gamma} \ge 0.75$)
- Data well described in shape by LO MC RAPGAP
- <u>NLO QCD predictions</u> without suppression of res. PhP describe the shape of cross sections, but overestimate measurements by a factor ~ 2
- data indicate global suppression of both direct and resolved PhP

マロト イヨト イヨト

Hadronisation corrections — LO & NLO

Roger Renner

Diffractive Dijets in Photoproduction

Hadronisation corrections — resolved & direct enriched

