

Strange Pentaquark Search with ZEUS

Zhenhai Ren (Columbia University) for the ZEUS Collaboration

- Introduction
- $\times \Xi^{--}$ in $\Xi^{-}\pi^{-}$
- $\sqrt{\Theta^+} \rightarrow K_s^0 P$
- Some recent studies
- Conclusions

Introduction – Experimental Overview

Θ^+ positive results

Group	Reaction	Mass	Width	σ 's*
		(MeV)	(MeV)	
LEPS	$\gamma C \rightarrow K^+ K^- X$	1540 ± 10	< 25	4.6
DIANA	$K^+Xe \rightarrow K^0pX$	1539 ± 2	< 9	4.4
CLAS	$\gamma d \rightarrow K^+ K^- p(n)$	1542 ± 5	< 21	$5.2 \pm 0.6^{\dagger}$
SAPHIR	$\gamma d \rightarrow K^+ K^0(n)$	1540 ± 6	< 25	4.8
ITEP	$\nu A \to K^0 p X$	1533 ± 5	< 20	6.7
CLAS	$\gamma p \rightarrow \pi^+ K^+ K^-(n)$	1555 ± 10	< 26	7.8
HERMES	$e^+d \to K^0 p X$	1526 ± 3	13 ± 9	~ 5
ZEUS	$e^+p \rightarrow e^+K^0pX$	1522 ± 3	8 ± 4	~ 5
COSY-TOF	$pp \rightarrow K^0 p\Sigma^+$	1530 ± 5	< 18	4-6
SVD	$pA \rightarrow K^0 pX$	1526 ± 5	< 24	5.6

Θ^+ negative results

Group	Reaction	Limit	Sensitivity?
BES	$e^+e^- \rightarrow J/\Psi \rightarrow \Theta\Theta$	$< 1.1 \times 10^{-5}$ B.R.	No*
Belle	$e^+e^- \to B^0B^0 \to \bar{p}pK^0$	$< 2.3 \times 10^{-7}$ B.R.	Θ^{++}
BaBar	$e^+e^- \to \Upsilon(4S) \to pK^0X$	$< 1.0 \times 10^{-4}$ B.R.	??
HERA-B	$pA \to K^0 pX$	$< 0.02 imes \Lambda^*$	No?
CDF	$p\bar{p} \rightarrow K^0 p X$	$< 0.03 imes \Lambda^*$	No?
PHENIX	$Au + Au \rightarrow K^- \bar{n}X$	(not given)	??

Ξ⁻⁻ results

Goal of new ZEUS studies

- Look at various kinematics regions
 - Understand the production mechanism?
- check statistical sensitivity to established states

$K_{s}^{0} \& \Lambda$ selection

- Data sample \Rightarrow 121pb⁻¹
 - DIS : Q² > 1, 20 GeV²
 - Photo production (PHP)
 : Q² < 1 GeV²
- Selected by requiring displaced vertex with neutral charge — V0
- Clean signal with high statistics:
 - K⁰_s
 DIS : ~870K
 PHP : ~4,400K
 Λ(Λ)
 DIS : ~81K(69K)
 PHP : ~450K(380K)

Particle identification using dE/dx

dE/dx – energy loss due to ionization measured by CTD

Band cut motivated by Bethe-Bloch equation

- Proton
 - Inside red band
 - o dE/dx > 1.15 mips
 - P < 1.5 GeV
- K[±] meson
 - Inside blue band
 - o dE/dx > 1.25 mips
- Pions
 - All tracks excluding proton & K[±] meson

For proton and K[±] meson

- Relatively high purity, ~60%
- Phase space limited by cutting on track momentum

Non-observation of $\Xi^{--}(1860)_{zeus}$

 Most of the acceptance effect largely cancel in the ratio

Observation of Θ^{+}

ZEUS Collaboration; S. Chekanov et al. Physics Letters B 591 (2004) 7-22

- Kinematics range $Q^2 > 20 GeV^2$ $P_T(\Theta^+) > 0.5 GeV, |\eta(\Theta^+)| < 1.5$
- A signal with ~4.6 σ statistical significance was observed at

$$M = 1521.5 \pm 1.5(stat)^{+2.8}_{-1.7}(syst)MeV$$

 Gaussian width 6.1±1.5 MeV (experimental resolution ~2 MeV)

Main goal of new studies

- Why only at Q²>20 GeV²?
- Another Σ state?
- What is statistical sensitivity compared to other experiments?

Θ^+ cross sections and ratios ($\Theta^+ \rightarrow K^0 p / \Lambda \rightarrow p\pi$) $Q^2 > 20 GeV P_T(\Theta^+) > 0.5 GeV, |\eta(\Theta^+)| < 1.5$

- $\sigma(\Theta^+) / \sigma(\Lambda)$ consistent with Q² independence
- Θ⁺ kinematics was assumed to be the same as Σ state in MC— pure fragmentation
 - Could be too strong assumption (see below)

Θ⁺⁺ in K⁺p channel

Not statistically significant (~ 2.0 σ)

- * No Θ^{++} was observed
- Confirms previous ZEUS studies using statistics by a factor of ~10 larger

ZEUS sensitivity to known states : $\Lambda(1520) \rightarrow K^{-}p$

- $\Lambda(1520)$: clear signal with large statistics
 - Second largest statistics in colliding beam experiments (after BaBar)
- $\Lambda(1520)$: S/B remains the same with increasing Q²
 - consistent with pure fragmentation from partonic string hadronisation as in e⁺e⁻

ZEUS sensitivity to known states : $\Lambda_c \rightarrow K_s^0 p$

- Clean Λ_c signal (> 4σ at Q² > 1 GeV²)
 - S/B increases with Q²
 - inconsistent with pure fragmentation production mechanism
 - consistent with boson gluon fusion(BGF) to cc hadronisation as for charm meson production
- S/B is the best for Q²>20 GeV² (where Θ⁺ was observed)
- May explain nonobservation of Θ⁺ in PHP and low Q² DIS

$\Lambda(1520)$: forward vs. rear

Forward region — the direction of the proton beam

Same production rate at forward and rear

Consistent with pure fragmentation

Consistent with same production rate at forward and rear

Consistent with BGF→cc̄ production mechanism

Fit was done with peak position and width fixed to the sum plot

Θ^+ : forward vs. rear

Production rate is higher at forward region than at rear region

 >3σ difference in number of events

Favors proton-remnant fragmentation origin

Fit was done with peak position and width fixed to the sum plot

$\Lambda(1520)$: particle vs. anti-particle

Same production rate for particle and anti-particle

Consistent with pure fragmentation

Consistent with same production rate for particle and anti-particle

Consistent with BGF→cc production mechanism

Fit was done with peak position and width fixed to the sum plot

Θ^+ : particle vs. anti-particle

- Data may indicate slightly more events for particle than for anti-particle
 - \circ <2 σ difference
 - However, anti-particle data are also perfectly consistent with the background fit only
- May get clearer result if only look at forward region where S/B will be better

Θ^+ : particle vs. anti-particle in forward region

- > 5σ peak from the fit for particle channel
- Again only < 2σ difference by comparing events for particle with events for anti-particle

Fit was done with peak positions, peak widths and background shape fixed to the sum plot

Θ^+ : particle vs. anti-particle in forward region

 χ^2 check shows consistency for the same production rate in particle and anti-particle

Fit was done with the whole shape fixed to the sum plot

$\Theta^{+:}$ another Σ state? Look at M($\Lambda\pi$)

- $\Sigma(1385)$ & Ξ clearly observed
- No signal around the mass where Θ⁺ is observed
- A ~4.4σ peak at ~1600 MeV for Q² > 1 GeV²
 - Σ(1600) PDG state (**)?
 - Not reported by any colliding experiments
 - o statistical significance is not high

Conclusion

- Published already
 - Non-observation of Ξ^{--} in $\Xi^{-}\pi^{-}$
 - Observation of $Θ^+ \rightarrow K_s^0 P$

• $\sigma(ep \rightarrow e\Theta + X): 125 \pm 27(stat)^{+36}_{-28}(syst)pb$

- New results
 - \circ $\Lambda(1520)$ production is consistent with pure fragmentation origin
 - S/B remains the same as Q² increases
 - Same production rate for forward/rear and particle/antiparticle
 - Λ_c production is not consistent with pure fragmentation it can be produced by boson-gluon-fusion $BGF \rightarrow cc$
 - S/B increases as Q² increases
 - Consistent with same production rate for forward/rear and particle/antiparticle
 - $\circ \Theta^+$ May favor proton-remnant fragmentation origin
 - Production rate is higher at forward region than rear region
 - Production rate is higher for particle than for anti-particle
 - however the statistics is too small to make strong conclusion