ZEUS F_2^D results

XIII International Workshop on Deep Inelastic Scattering
Madison, Wisconsin U.S.A., Apr. 27-May 1, 2005

Heuijin Lim (DESY)
on behalf of the ZEUS Collaboration

• Introduction
• Diffractive measurement with M_X method
 ➔ hep-ex/0501060 (Accepted by Nucl, Phys. B.)
• Diffractive measurement with a leading proton
• Summary
Inclusive Diffraction in Deep Inelastic Scattering

Non-peripheral process

Kinematics of $ep \rightarrow eXp$

\[Q^2 = -(k - k')^2 \]
\[W = \sqrt{(p + q)^2} \]
\[x_{IP} \approx \frac{Q^2 + M^2_X}{Q^2 + W^2} \]
\[t = (p - p')^2 \]

\[x = Q^2 / (2q \cdot p) \]
\[M^2_X = (k - k' + p - p')^2 \]
\[\beta \approx \frac{Q^2}{M^2_X + Q^2} = \frac{x}{x_{IP}} \]
\[x_L = p'/E_p = 1 - x_{IP} \]

Present diffractive measurement in terms of

$\Rightarrow d\sigma(M_X, W, Q^2)/dM_X$ and $x_{IP} F^{D(3)}_2(\beta, x_{IP}, Q^2)$

Diffractive process

Heuijin Lim

DIS05, Madison, Apr. 27 – May 1
Event Topologies (ep → eXp)

(Diffractive scattering)

(M_X = 5 GeV, Q^2 = 19 GeV^2, W = 123 GeV)

(Non-peripheral scattering)

(M_X = 45 GeV, Q^2 = 13 GeV^2, W = 93 GeV)
M_X method using Forward Plug Calorimeter

Forward Plug Calorimeter
- Increase the accessible M_X range by a factor of 1.7.
- If $M_N > 2.3$ GeV deposits $E_{\text{FPC}} > 1$ GeV, recognized and rejected

\[\frac{dN}{d \ln M_X^2} = D + c \cdot \exp(b \cdot \ln M_X^2) \]

Diffraction **Non-diffraction**

with free parameters, D, b and c from fit.

\[\frac{d\sigma_{\text{diff}}}{d M_X} / d M_X, M_N < 2.3 \text{ GeV} \]

- $2.2 < Q^2 < 80$ GeV2
- $37 < W < 245$ GeV
- $0.28 < M_X < 35$ GeV

Using 98-99 data with 4.2 pb$^{-1}$
Selection of diffractive events with Leading Proton Spectrometer

Detection of the scattered proton in LPS with $x_L > 0.9$.

- No background from proton dissociation.
- Limited statistics due to geometrical acceptance.

Photon diffractive dissociation
Double dissociation
Pion exchange

\[1 - x_{IP} = x_L = \frac{p}{Z} / p_Z \]

\[\frac{d\sigma^\text{diff}}{dM_x dt} \]

Using 97 data

- $0.03 < Q^2 < 0.60 \text{ GeV}^2$ → 3.6 pb$^{-1}$
- $2 < Q^2 < 100 \text{ GeV}^2$ → 12.8 pb$^{-1}$
- $25 < W < 280 \text{ GeV}$
- $1.5 < M_x < 70 \text{ GeV}$
- $0 < |t| < 1 \text{ GeV}^2$
Kinematical ranges

- **M_X method**: Lower M_X region (~ higher β region) and lower x_{IP} region.
- **LPS method**: Higher x_{IP} region
<table>
<thead>
<tr>
<th>Diffractive Cross Section</th>
<th>Diffractive Structure Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• t dependence</td>
<td>• x_{IP} dependence</td>
</tr>
<tr>
<td>• W dependence</td>
<td>→ Q^2 dependence</td>
</tr>
<tr>
<td>$\rightarrow \alpha_{IP}^{\text{diff}}(0)$</td>
<td>• Comparison with theory</td>
</tr>
<tr>
<td>• M_X dependence</td>
<td>• β dependence</td>
</tr>
<tr>
<td>• $\sigma^{\text{diff}}/\sigma^{\text{tot}}$</td>
<td></td>
</tr>
</tbody>
</table>
t dependence of Diffractive Cross Section (LPS)

- Fit t distribution to \(\frac{d\sigma}{dt} \propto \exp(-bt) \)
 \[b = 7.9 \pm 0.5 \text{(stat.)}^{+0.9}_{-0.5} \text{(syst.)} \text{GeV}^{-2} \]

\(\frac{d\sigma}{dt} \) shows steep fall-off with \(t \) as in elastic hadron-hadron scattering.

- Regge phenomenology predicts “shrinkage” of the diffractive peak:
 \[b = b_0 + 2\alpha' \ln \frac{W^2}{M_X^2} \approx b_0 + 2\alpha'_{IP} \ln \frac{1}{x_{IP}} \]

- Additional \(\beta \) dependence expected in models.
Diffractive Cross Section (M_X)

ZEUS

$\frac{d\sigma_{\text{diff}}}{dM_X}$, $M_X < 2.3$ GeV

- For $M_X < 2$ GeV, $d\sigma/dM_X$ depends weakly on W.

- For $M_X > 2$ GeV, $d\sigma/dM_X$ rises rapidly with W.

Heuijin Lim

DIS05, Madison, Apr. 27 – May 1
W dependence of Diffractive Cross Section

ZEUS

- **Fit to the diffractive cross section**:

 \[
 \frac{d\sigma^{\text{diff}}_{\gamma^* p \to X N}}{d M_X} = h \cdot W^{a^{\text{diff}}} \sim (W^2)^{(2\alpha_{IP} - 2)}
 \]

 (h, \(a^{\text{diff}} \) free parameters)

 Assuming \(d\sigma / dt \propto e^{b \cdot t} \) and

 \[
 \alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} \cdot t
 \]

 \[
 \therefore \alpha_{IP}(0) = \overline{\alpha_{IP}} + \frac{\alpha'_{IP}}{b} \approx (a^{\text{diff}} / 4 + 1) + 0.03
 \]

 from LPS

- **For \(M_X < 2 \text{ GeV} \)**

 \(\Rightarrow \) \(\alpha_{IP}^{\text{diff}}(0) \) compatible with the soft Pomeron.

- **For larger \(M_X \) and \(Q^2 > 20 \text{ GeV}^2 \)**

 \(\Rightarrow \) \(\alpha_{IP}^{\text{diff}}(0) \) lies above the results expected from soft Pomeron and increases with \(Q^2 \).

\[\alpha_{IP}^{\text{soft}}(0) = 1.096^{+0.012}_{-0.009} \text{ from had-had scattering}\]
\[Q^2 \text{ dependence of } \alpha_{\text{IP}}^{\text{diff}}(0) \]

- **Fit to data with** \(2 < M_X < 15 \text{ GeV} \)
 \[
 \Delta \alpha_{\text{IP}}^{\text{diff}} \equiv \alpha_{\text{IP}}^{\text{diff}}(0; 2.7 < Q^2 < 20 \text{ GeV}^2) - \alpha_{\text{IP}}^{\text{diff}}(0; 20 < Q^2 < 80 \text{ GeV}^2) = 0.0714 \pm 0.0140(\text{stat.})^{+0.0047}_{-0.0100}(\text{syst.})
 \]

- **Conclusion:**
 - \(\alpha_{\text{IP}}^{\text{diff}}(0) \) is rising with \(Q^2 \), with a significance of 4.2 s.d.
 - Assuming single Pomeron exchange, this observation **contradicts** Regge factorisation.

- **Fit to data with** \(2 < M_X < 15 \text{ GeV} \) and \(x_{\text{IP}} < 0.01 \)
 \[
 \alpha_{\text{IP}}^{\text{diff}}(0; 2.7 < Q^2 < 20 \text{ GeV}^2) = 1.1209 \pm 0.0051(\text{stat.})^{+0.0136}_{-0.0122}(\text{syst.})
 \]

 \[
 \Delta \alpha_{\text{IP}}^{\text{diff}} = 0.0578 \pm 0.0178(\text{stat.})^{+0.0081}_{-0.0118}(\text{syst.}) \quad \Leftarrow \text{Affected from the limited } x_{\text{IP}} \text{ range.}
 \]

 - **Consistent with LPS** \(\alpha_{\text{IP}}^{\text{diff}}(0; 0.03 < Q^2 < 39 \text{ GeV}^2) = 1.16 \pm 0.02(\text{stat.}) \pm 0.02(\text{syst.}) \)
M_X dependence of diffractive cross section

ZEUS

![Graph](image)

\[Q^2 \frac{d\sigma_{\text{diff}}^{\gamma^* p \rightarrow XN}}{dM_X} \] vs. \(M_X \) at \(W = 220 \text{ GeV} \)

- **For** \(M_X < 4 \text{ GeV} \),
 - rapid decrease with \(Q^2 \).
 - \(\Rightarrow \) predominantly higher twist.

- **For** \(M_X > 10 \text{ GeV} \),
 - constant or slow rise with \(Q^2 \).
 - \(\Rightarrow \) leading twist.
Diffractive contribution of the total cross section

\[
\Gamma_{tot}^{diff} = \frac{\int_{M_a}^{M_b} dM_X d\sigma_{\gamma^* p \rightarrow XN, M_N < 2.3 GeV}^{diff}}{dM_X}
\]

- For \(M_X < 2 \) GeV, falling with \(W \).
- For \(M_X > 2 \) GeV, constant with \(W \).

- For \(M_X < 2 \) GeV, decreasing with rising \(Q^2 \).
- For \(M_X > 8 \) GeV, no \(Q^2 \) dependence.

→ For larger \(M_X \), \(\sigma^{diff} \) has the similar \(W \) and \(Q^2 \) dependences as \(\sigma^{tot} \).

- For the highest \(W \) bin (200<\(W < 245 \) GeV),
 \(\sigma^{diff} (0.28< M_X < 35 \text{ GeV}, M_N < 2.3 \text{ GeV}) / \sigma^{tot} \)

 \[
 15.8^{+1.2}_{-1.0} \% \text{ at } Q^2 = 4 \text{ GeV}^2 \\
 9.6^{+0.7}_{-0.7} \% \text{ at } Q^2 = 27 \text{ GeV}^2
 \]
<table>
<thead>
<tr>
<th>Diffractive Cross Section</th>
<th>Diffractive Structure Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>• t dependence</td>
<td>• x_{IP} dependence</td>
</tr>
<tr>
<td>• W dependence</td>
<td>$\rightarrow Q^2$ dependence</td>
</tr>
<tr>
<td>$\rightarrow \alpha_{IP}^{\text{diff}} (0)$</td>
<td>• Comparison with theory</td>
</tr>
<tr>
<td>• M_X dependence</td>
<td>• β dependence</td>
</tr>
<tr>
<td>• $\sigma^{\text{diff}}/\sigma^{\text{tot}}$</td>
<td></td>
</tr>
</tbody>
</table>
Diffractive structure function of the proton

- For $M_X < 2$ GeV, $x_{IP}F_2^{D(3)}$ is constant with x_{IP}.
- For $M_X > 2$ GeV, rapid increase as $x_{IP} \to 0$.

Data are compared with the color dipole model in BEKW parametrisation.

$$x_{IP}F_2^{D(3)} = c_T \cdot F_{qq}^T + c_L \cdot F_{qq}^L + c_g \cdot F_{qg}^T$$

$F_{qq}^T \propto \beta(1 - \beta)$ dominates at $\beta > 0.15$

$F_{qq}^L \propto \beta^3 (1 - 2\beta)^2$ substantial at large β

$F_{qg}^T \propto (1 - \beta)\gamma$ dominates at small β
Comparison of LPS and M_X method

$\gamma^* p \rightarrow X p$ via the exchange of a Reggeon α_j.

\[
\frac{d\sigma}{d \ln M_X^2} \propto \exp \left(1 + \alpha_k(0) - 2\alpha_j \right) \cdot \ln M_X^2
\]

- M_X method suppresses the Reggeon contributions.
- Good agreement between LPS and M_X method ($\times 0.7$ for $M_N < 2.3$ GeV) except for the region of $x_{IP} > 0.01$ where Reggeon contributions may dominate LPS.
Comparison with Colour Dipole Model - I

Comparison with FS04 (Forshaw & Shaw) Regge dipole model with/without saturation and CGC (Colour Glass Condensate) model → Refer to hep-ph/0411337.

Thanks to J. Forshaw.

Dipole model predictions for $F_2^{D(3)}$

- ZEUS LPS97
 - $Q^2=2.4$ GeV2
 - $Q^2=3.7$ GeV2
 - $Q^2=6.9$ GeV2
 - $Q^2=13.5$ GeV2
 - $Q^2=39$ GeV2

Fit F_2 and then predict $x_{IP}F_2^{(3)}$
Comparison with Colour Dipole Model - II

Low Q^2 from ZEUS M_X 98-99

Dipole model predictions for $F_{D(3)}^{D(3)}$

$\beta = 0.003$

$\beta = 0.0044$

$\beta = 0.0066$

$\beta = 0.0067$

$\beta = 0.0099$

$\beta = 0.0148$

$\beta = 0.0218$

$\beta = 0.032$

$\beta = 0.0472$

$\beta = 0.0698$

$\beta = 0.1$

$\beta = 0.1429$

$\beta = 0.2306$

$\beta = 0.3077$

$\beta = 0.4$

$\beta = 0.6522$

$\beta = 0.7353$

$\beta = 0.8065$

$Q^2 = 2.7$ GeV2

$Q^2 = 4$ GeV2

$Q^2 = 6$ GeV2

$M_X = 30$ GeV

$M_X = 20$ GeV

$M_X = 11$ GeV

$M_X = 6$ GeV

$M_X = 3$ GeV

$M_X = 1.2$ GeV

\Rightarrow Predictions of model are corrected by $1/0.7$ for the $M_N<2.3$ GeV of ZEUS M_X method.
Comparison with Colour Dipole Model - III

High Q^2 from ZEUS M_X 98-99

Dipole model predictions for $F_{2D}^{(3)}$

- CGC and FS04(sat) are able simultaneously to describe F_2 and $x_{IP}F_2D^{(3)}$.
- Forshaw & Shaw have not been able to find a good fit which does not invoke saturation.
Q^2 dependence of $x_{IP}F_2^{D(3)}$

- For $\beta = 0.9$
 - (dominated events with $M_X < 2$ GeV),
 - Constant or slowly decreasing with Q^2.
 - Expect higher twist effect from $(q\bar{q})_L$.

- For $\beta \leq 0.7$ and $x = \beta x_{IP} < 0.002$,
 - $x_{IP}F_2^{D(3)}$ increases with increasing Q^2.
 - Positive scaling violations.
 - Suggest perturbative effects such as gluon emission

- For fixed β,
 - Q_2 dependence of $x_{IP}F_2^{D(3)}$ changes with x_{IP}.
 - Inconsistent with the Regge factorisation hypothesis
\[\beta \text{ dependence of } x_{IP}F_2^{D(3)} \text{ at } x_{IP}=0.01 \]

ZEUS

- \(x_{IP}F_2^{D(3)} \) for \(x_{IP}=x_0=0.01 \)
 - expect this to represent the structure function of Pomeron, up to a normalisation constant.

- For \(\beta > 0.1 \)
 - \(x_{IP}F_2^{D(3)} \) has a maximum around \(\beta=0.5 \).
 - The \(\beta(1-\beta) \) dependence observed is expected in dipole models of diffraction by \(\gamma^* \rightarrow q\bar{q} \) splitting and two gluon exchange.

- For \(\beta < 0.1 \)
 - \(x_{IP}F_2^{D(3)} \) rises as \(\beta \rightarrow 0 \) and the rise accelerates with growing \(Q^2 \).
 - Similar to the logarithmic scaling violation of \(F_2 \) at low \(x \) due to QCD evolution.
Summary

- The measurements of diffraction in DIS with M_X method and with a leading proton show:
 - Slope of $d\sigma/d|t|$ is compatible with soft interaction at the proton vertex.
 - Indication for Regge factorisation breaking seen in
 - Q^2 dependence of $\alpha_{IP}^{\text{diff}}(0)$
 - Q^2 dependence of $x_{IP}F_2^{D(3)}$ for fixed β and fixed x_{IP}
 - Diffractive contribution of the total cross section

<table>
<thead>
<tr>
<th>$\sigma_{\text{diff}}/\sigma_{\text{tot}}$</th>
<th>$M_X < 2 \text{ GeV}$</th>
<th>Higher M_X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{IP}^{\text{diff}}(0)$</td>
<td>Decreasing with W</td>
<td>Constant with W</td>
</tr>
<tr>
<td>Soft Pomeron</td>
<td>No Q^2 dependence</td>
<td>Q^2 dependence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breaking of single Pomeron exchange</td>
</tr>
<tr>
<td>$Q^2 \sigma_{\text{diff}}$</td>
<td>Decreasing with Q^2</td>
<td>Constant with Q^2</td>
</tr>
<tr>
<td>Higher twist behaviour</td>
<td></td>
<td>Leading twist behaviour</td>
</tr>
</tbody>
</table>

- Diffraction shows evidence for pQCD evolution with Q^2 as $x_{IP} \to 0$ or $\beta \to 0$.
- Data can be described by color dipole model (BEKW, GBW, FS04, CGC).

- Expect new diffractive results with high statistics for an extended kinematic range (especially $Q^2 < 500 \text{ GeV}^2$) soon.