

Event Shapes at HERA with ZEUS

Adam Everett University of Wisconsin On Behalf of the ZEUS Collaboration DIS 2005, Madison, Wisconsin, USA

HERA Kinematic Variables

•920 GeV p⁺ (820 GeV before 1999)
•27.5 GeV e⁻ or e⁺
•318 (300) GeV cms

Breit Frame Definition: $q + 2x_BP = 0$

Similar to hemisphere in e⁺e⁻

Kinematic Bins

ZEUS

•Analysis conducted in 8 bins of Q²

•Lowest two Q² bins are divided into two bins of x

•Two studies:

- Means of each variable in each bin
- Differential distributions of each variable in each bin

NOTE: multiple x bins at low Q²

Approach to Non-perturbative Calculations

pQCD prediction \rightarrow measured distribution

• Correction factors for non-perturbative (soft) QCD effects

Proposed theory^{*}: Use power corrections to correct for non-perturbative effects in infrared and collinear safe event shape variable, F:

Power correction

Independent of any fragmentation assumptions

 $\overline{\alpha_0} = \begin{array}{c} \text{Universal "non-perturbative parameter"} \\ * - (Dokshitzer, Webber, phys. Lett. B 352(1995)451) \end{array}$

Combination of the hard and soft scales

Axis Dependent: $T_T, B_T, T_{\gamma}, B_{\gamma}$

Sums are over all momenta in the current hemisphere of the Breit frame

Extraction of α_0 and α_s

Apply Power Corrections to Event △^{0.25} Shape Means vs. Q² [♥] ^{0.2}

- Measure <F> and compare to NLO + PC
- Extract α_{0} and α_{S} from fits to means
- (First group of slides)

Apply Power Corrections to Event Shape Differential Distributions

- Measure F and compare to NLO + Resummation + PC
- Extract α_{0} and α_{S} from these distributions
- Results new for this meeting
- New Event Shape

(Second group of slides)

Mean Event Shapes

Add PC to NLO in order to agree with data

2-parameter NLO + PC fit

- Simultaneous fit for α_{s} and α_{0}
- Each shape fit separately

Fits use Hessian method for statistical and systematic errors

NLO calculation using DISASTER++

ZEUS 98-00 (82.2 pb⁻¹) 80 < Q² < 2*10⁴ GeV² 2*10⁻³ < x < 0.6

Recall: multiple Q^2 bins at low x

Mean Parameters

Extracted parameters for each shape

- Fitted α_s values consistent to within 5%
- Fitted α₀≈0.45 to within 10%
- (excluding T_γ)

Theory errors dominate, except for γ axis shapes

Shape Distributions

Fit differential distributions over a limited range.

- Bins for which theoretical calculations are expected to be questionable are omitted from fit.
- Resummation is applied with DISRESUM.

ZEUS 98-00 (82.2 pb⁻¹) 9 < Q < 141 GeV 2*10⁻³ < x < 0.6

Fit differential distributions over a limited range.

- Bins for which theoretical calculations are expected to be questionable are omitted from fit.
- Resummation is applied with DISRESUM.

ZEUS 98-00 (82.2 pb⁻¹) 9 < Q < 141 GeV 2*10⁻³ < x < 0.6

0.2

0.15

<Q> = 21 GeV 🔵 <Q> = 60 GeV

= 29 GeV 📕 <Q> = 82 GeV

NLO + NLL + PC (fitted)

42 GeV 🔺 <Q> = 113 GeV

NLO + NLL + PC (unfitted)

0.25

 M^2

Shape Distributions

Fit differential distributions over a limited range.

- Bins for which theoretical calculations are expected to be questionable are omitted from fit.
- Resummation is applied with DISRESUM.

ZEUS 98-00 (82.2 pb⁻¹) 9 < Q < 141 GeV 2*10⁻³ < x < 0.6

Distribution Parameters

Fits use Hessian method for statistical and systematic errors.

All variables with a good $\chi^{2.}$

Fits are sensitive to matching method.

 α_{S} agrees with world average

 $\alpha_0 \approx 0.5.$

H1 also studies Event Shape differential distributions

Event Shapes With Jets

Energy flow out of event plane defined by proton direction and thrust major axis

- Sensitive to perturbative & non-perturbative contributions
- Dijet event:
 - LO dijet pQCD calculation gives K_{out} = 0
 - First contribution to K_{out} is from non-perturbative part or from NLO dijet pQCD calculation

3-jet Event Shape Variable

No fits performed up to now

First comparison with LO+NLL+PC is shown

• $\alpha_{s}(M_{Z}) = 0.118$

Waiting on generalized resummation program

ZEUS 98-00 (82.2 pb⁻¹) Q² > 100 GeV²

- Precise measurement of different event shapes
 - Means, Differential Distributions, and new event shapes for jet events
- α_0 extraction from Event Shapes mean and Event Shape differential distributions are consistent
 - $\alpha_0 \approx 0.45 0.5$
- Need some theoretical input if we want to proceed with the jets Event Shapes