ZEUS Measurement of Inelastic $J/\psi \rightarrow \mu^+\mu^-$
Production in DIS

Alexei Antonov
Moscow Engineering and Physics Institute @ DESY
on behalf of the ZEUS Collaboration

13th International Workshop on Deep Inelastic Scattering - DIS05
Madison, Wisconsin April 27 - May 1, 2005

- Introduction
- Inelastic J/ψ Electroproduction
- Conclusions
Introduction

- Inelastic charmonium production =
 - $c\bar{c}$ creation (short-distance scales) \otimes
 - bound state formation (long-distance scales)
- Photon-Gluon Fusion (DIS)
 - different approaches to parton dynamics and
 $c\bar{c}$ bound state formation

Advantages of electroproduction:
- diffractive processes suppressed
- resolved-photon processes suppressed
- reduced uncertainties of perturbative calculations
Introduction (cont’d)

- Colour Singlet Model:
 - $c\bar{c}$ must have quantum numbers of Charmonium
 - one phenomenological parameter fixed from l^+l^- decay width
 - failed to describe high-p_T charmonia production at Tevatron by orders of magnitude ⇒ what about HERA?

- NRQCD factorisation formalism:
 - $c\bar{c}$ in Colour Octet states must contribute to charmonium production (evolution into physical charmonium via soft gluon emission at long-distance scales)
 - “$c\bar{c} \rightarrow$ charmonium” transition parametrised using a (universal) set of Long Distance Matrix Elements; currently fixed from hadroproduction or B-decays data ⇒ can HERA data be included in this global analysis?
Motivation: World DATA vs NRQCD

CDF Run I

NRQCD $e^+e^- \rightarrow e^+e^- J/\psi X$ at LEP2

DELPHI

ZEUS

- Mainstream - NRQCD \Rightarrow CO contributions: essential to describe high-p_T ψ production @ Tevatron, BUT...
- Polarisation properties?
- NRQCD factorisation holds for ψ? ME universality? ME uncertainties? Soft gluon emission under control (resummation)?
Motivation: k_T-factorisation - BFKL/CCFM

- k_T-factorisation approach:
 - non-collinear parton dynamics (BFKL/CCFM evolution equations)
 - $\sigma = \text{unintegrated (transverse momentum dependent) gluon densities} \otimes \text{off-shell matrix elements}$
 - less significant CO contributions than in NRQCD
 - broader p_T spectra, specific polarisation properties

- Succeeded in describing the p_T spectra and quarkonium polarization properties measured at Fermilab and HERA.
• $e p \rightarrow e J/\psi X$ was believed to be a good gauge for gluon density.

• check H1 main conclusion on the same analysis: inclusion of CO contributions provides better description of shapes except for bad description of inelasticity distribution

• Search for signatures of CO, test possible alternatives \Rightarrow e.g. k_t-factorization
Analysis

- Analysis of 96-00 data
 → Integrated lumi $L = 109$ pb$^{-1}$
- The reaction $e p \rightarrow e J/\psi X$
 with $J/\psi \rightarrow \mu^+\mu^-$ is studied for:

 $2 < Q^2 < 80$ GeV2
 $50 < W < 250$ GeV
 $0.2 < z < 0.9$
 $-1.6 < Y_{lab} < 1.3$

z: fraction of virtual photon energy transfered to J/ψ (in proton rest frame)

- The diffractive proton-dissociative background where estimated($\sim 6\%$) and subtracted from data.
- Data sample include contributions from ψ' and B–meson decays into J/ψ. This contributions were estimated and added to theoretical predictions.
- The contribution of χ_c radiative decays into J/ψ was neglected.

The cross section for the process is 302 ± 23 (stat.) $^{+28}_{-20}$ (syst.) pb.
Theoretical models

- NRQCD calculations by Kniehl and Zwirner. Marked as NRQCD(CS+CO) and NRQCD(CS).

 Uncertainties (added in quadrature):
 - $m_c = 1.5 \pm 0.1$ GeV
 - $\mu = (0.5 \div 2)\sqrt{Q^2 + M_{\psi}^2}$
 - PDF set MRST98LO (CTEQ5L)
 - non-perturbative ME from hadroproduction

- k_t-factorization calculations by Lipatov and Zotov. Marked as k_t-fact.(LZ)

 BFKL evolution of parton cascade.
 - KMS unintegrated gluon density, low k_T cut-off 1 GeV;
 - $m_c = 1.4$ GeV (KMS)
 - $\mu = k_T$ for $k_T > 1$ GeV, for $k_T \leq 1$ GeV the scales were fixed at 1 GeV.

- CASCADE: (MC implementation of CCFM evolution)
 - $m_c = 1.5$ GeV
 - $\alpha_s = \alpha_s(m_T)$
 - J2003 set 2 unintegrated gluon density
Measurements of $d\sigma/dz$ and $1/\sigma d\sigma/dz$

- NRQCD CS generally agree.
- CS + CO: resummation needed? higher order corrections?
- k_T-factorisation gives good description;
- CASCADE (J2003 set 2): absolute prediction overshoots data; shape reasonable.
Measurements of $d\sigma/dQ^2$ and $d\sigma/dW$
Measurements of $\frac{d\sigma}{dp_T^2}$ and $\frac{d\sigma}{dY^*}$ in γp
Measurements of $d\sigma/d\log(M_X^2/\text{GeV}^2)$ and $d\sigma/dY_X$

where M_X is the invariant mass of the hadronic final state.
Comparison to H1 results $d\sigma/dz$ and $1/\sigma d\sigma/dz$

The ZEUS data are in agreement with the H1 results.

H1 kinematic range:
- $2 < Q^2 < 100 \text{ GeV}^2$
- $50 < W < 225 \text{ GeV}$
- $0.3 < z < 0.9$
- $p_T^* > 1 \text{ GeV}^2$
Comparison to H1 results $d\sigma/dp_T^2$ and $d\sigma/dY^*$ in γp

![Graph showing comparisons between different experimental results and theoretical models for $d\sigma/dp_T^2$ and $d\sigma/dY^*$ in γp. The graph includes data from ZEUS and H1 experiments, as well as predictions from NRQCD and NRQCD (CS) models.](image-url)
Summary and conclusions

- New ZEUS measurement of inelastic J/ψ in DIS using complete data sample available at HERA I
- The data are in agreement with the H1 results.
- The data are compared with LO NRQCD predictions, including both CS and CO contributions, and k_T–factorisation calculations (BFKL and CCFM).
- Calculations of the CS process only generally agree with the data whereas inclusion of CO terms spoils this agreement. Also the k_T–factorisation calculations generally agree with the data. CASCADE (J2003 set 2) is above data, shapes of distributions are reasonably described except for W.
- Calculations with higher order corrections and soft gluon emission treatment needed.