ZEUS results on large rapidity gap events in NC and CC DIS at high Q²

> Leszek Adamczyk UST Cracow

On behalf of the ZEUS Collaboration

- Motivation
- MC models
- LRG selection
- Results

Neutral current

Charged current

Large Rapidity Gap events

High Q² DIS

Event topology

- NC
 - electron with large transverse momentum in central detector
- CC
 - neutrino carries away large transverse momentum

Kinematic variable:

- Q²- virtuality of the boson
- x fraction of proton momentum carried by struck quark
- x_{IP} fraction of proton momentum caried by diffractive exchange
- β momentum fraction of the exchange carried by struck quark Relation $x = x_{IP} \beta$

$$\sigma^{\text{dif}} = \sum_{a} \int \sigma^{\gamma/Z/W a} \otimes f_{a}^{\text{dif}}$$

Motivation
$$\sigma^{\text{tot}} = \sum_{a} \int \sigma^{\gamma/Z/W a} \otimes f_{a}$$

• Measure diffractive parton density functions (dPDF) of the proton at large scale ($200 < Q^2 < 2000 \text{ GeV}^2$). Important for predictions of diffractive production of large mass states in proton-proton collisions. For example diffractive Higgs (need dPDF at scale up to M_{μ}^2)

• Compare NC and CC diffraction to test factorisation in hard diffractive scattering

NC	\Leftrightarrow	CC
mainly EM exchange	\Leftrightarrow	purely weak exchange
symmetric target $\gamma(u\bar{u}, d\bar{d}, s\bar{s}) \Leftrightarrow$ asymmetric target W ⁺ ($u\bar{d}, c\bar{s}$)		

• Ratio $\sigma^{dif}/\sigma^{tot}$ sensitive to dPDF/PDF Is it independent of the target (NC vs. CC) ?

MC models

1. Mixture of DJANGOH interfaced with ARIADNE (colour dipole model) $e^+p \rightarrow e^+(v) X$ and RAPGAP diffractive MC with H1 fit 2 dPDF of the Pomeron $e^+p \rightarrow e^+(v) X p$

 MEPS (parton shower) with SCI (soft colour interaction) mechanism. Alternative model to produce LRG topology.

LRG selection

 η_{max} - rapidity of most forward energy deposition in central detector $\eta < 4$ Forward Plugin Calorimiter $4 < \eta < 5$

Rapidity gap: at least $4-\eta_{max}$ or with FPC veto $5-\eta_{max}$

ARIADNE not sufficient to describe η_{max} distribution

Use E_{FPC} < 1 GeV to suppress non-diffractive contribution

CC

ARIADNE + RAPGAP describes inclusive and LRG data well

 $e^+p \rightarrow e^+(v) X Y$ signal

obtained by subtracting non-diffractive ARIADNE & other bkg contributions

CC

SCI model does not describe η_{max} and charged-track multiplicity in inclusive sample

NC LRG data exceeds SCI prediction by factor of 2

Indication of similar effect in CC: 9 CC LRG data events 3.9⁺¹ SCI prediction

Ratio $\sigma_{e^+p \to e^+(v) X Y}(x_{IP} < 0.05) / \sigma_{e^+p \to e^+(v) X}(x_{Bj} < 0.05) vs. Q^2$

Ratio of cross sections calculated using RAPGAP and ARIADNE for acceptance corrections

NC ratio decreases with increasing Q²

CC and NC ratio compatible

Summary

- LRG events observed in CC and NC DIS at $Q^2 > 200 \text{ GeV}^2$
- CC and NC inclusive and LRG samples well described by mixture of ARIADNE and RAPGAP samples
- SCI model does not describe NC data, indication of similar effect in CC
- Ratio $\sigma_{e^+p \rightarrow e^+(v) \times Y}(x_{IP} < 0.05) / \sigma_{e^+p \rightarrow e^+(v) \times}(x_{Bj} < 0.05)$ in CC process consistent with that in NC process