Fragmentation of Charm into D^+, D^0, D_s^+, D^* and the Charm Fragmentation Function

Zuzana Rúriková H1/MPI Munich

DIS 2005 - April 29, 2005

- Motivation for fragmentation study
- Fragmentation fractions (D^+, D^0, D_s^+, D^*)
- Fragmentation function (D^*)
- Conclusions

Why Fragmentation?

Inclusive production cross-section of charm mesons:

Experimental Study of Fragmentation

Fragmentation

nonperturbative process (transition from quark to hadron) needs experimental study

$Questions \ to \ be \ addressed:$

- 1.) what is the probability of c-quark to fragment to different charmed mesons (fragmentation fractions)
- 2.) what fraction of the c-quark's energy is transferred to the charmed meson (fragmentation function)

Fragmentation Fractions of D^+ , D^0 , D^+_s, D^*

- Charm tagging: reconstruction of secondary vertex with the central silicon tracker
- ▷ signal to background ratio can be improved significantly by cut on decay length significance $(S_l = l/\sigma_l)$

D Meson Signals

- $\begin{array}{l|l} \triangleright & \frac{\text{Kinematic region:}}{2 < Q^2 < 100 \ \text{GeV}^2} \\ & 0.05 < y < 0.7 \\ & p_t(D) > 2.5 \ \text{GeV} \\ & |\eta(D)| < 1.5 \end{array}$
- Invariant mass spectra fitted:
 Gaussian + background
- Visible cross-sections were determined

Fragmentation Fractions

▷ Fragmentation fractions $f(c \rightarrow D)$ deduced from measured σ_{vis} using AROMA Monte Carlo:

$$f(c \to D) = \frac{\sigma_{vis}(c\bar{c} \to D) - \sigma_{vis}^{MC}(b\bar{b} \to D)}{\sigma_{vis}^{MC}(c\bar{c} \to D)} f_{MC}(c \to D)$$

[Eur.Phys.J.C38:447-459,2005]

Fragmentation factors	D^+	D^0	D_s^+	D^*
H1: $f(c \rightarrow D)$	0.203 ± 0.026	0.560 ± 0.046	0.151 ± 0.055	0.263 ± 0.032
World Average: $f(c \rightarrow D)$	0.232 ± 0.018	0.549 ± 0.026	0.101 ± 0.027	0.235 ± 0.010

Results compatible with world average values.

Fragmentation Ratios

▷ Ratio of u to d: $R_{u/d} = c\bar{u}/c\bar{d}$

▷ Strangeness suppression factor: $\gamma_s = 2c\bar{s}/(c\bar{u} + c\bar{d})$

▷ Fraction of vector D mesons: $P_V = V/(V + PS)$

Ratio	H1 measurement				e^+e^- experiments		
	value	stat.error	syst.error	theo.error	value	error	ref.
P_V^d	0.693	± 0.045	± 0.004	± 0.009	0.595	± 0.045	[42]
P_V^{u+d}	0.613	± 0.061	± 0.033	± 0.008	0.620	± 0.014	[43]
$R_{u/d}$	1.26	± 0.20	± 0.11	± 0.04	1.02	± 0.12	[42]
γ_s	0.36	± 0.10	± 0.01	± 0.08	0.31	± 0.07	[44]

[Eur.Phys.J.C38:447-459,2005]

H1 ep data agree with $e^+e^ \implies$ universality of charm fragmentation fractions

Fragmentation Function

Fragmentation function describes the energy transfer from quark to a given meson.

$e^+e^-collisions$

▷ natural choice

$$z = \frac{E_{D^*}}{\sqrt{s/2}} = \frac{E_{D^*}}{E_{beam}}$$

assuming LO processes - direct measurement of non perturbative fragmentation function

ep collisions

- ▷ choice of z observable not so obvious
- differences: IPS contribution, different kinematics

The Experimental Methods

Jet Method :

 $\mathrm{z_{jet}}$

▷ the energy of c-quark is approximated by the energy of the reconstructed D* jet

Hemisphere Method :

$$z_{hem} = \frac{(E+p_L)_{D^*}}{\sum_{hem}(E+p)}$$

Aspects of z(jet) & z(hem) Methods

Jet method and hemisphere method differ in case of gluon radiation:

Hemisphere method:

- \triangleright includes radiated gluons (fragmentation $c \longrightarrow D^*$)
- \triangleright closer to e^+e^-

Jet method:

- ▷ not sensitive to hard gluons from *c*-quark (fragmentation $c' \longrightarrow D^*$)
- maybe closer to non-perturbative fragmentation function

⇒ Comparison of both methods provides information about underlying physics.

D^* Tagging

Jet method:

- \triangleright D^* treated as stable meson
- \triangleright massive k_t -cluster jet algorithm applied in γp frame

Corrected Fragmentation Spectra

Hemisphere method : Jet method : 3 **1**/σ **d**σ/**d**z_{jet} 1/σ dσ/dz_{hem} H1 Prel. Data 2000 H1 Prel. Data 2000 2.5 2.5 1.5 1.5 0.5 0.5 0.2 0 0.6 0.8 0.8 0.4 0.4 0.6 **Z**jet **Z**_{hem} Visible Range: $p_{\rm t}(D^* {\rm jet}) > 3 \ {\rm GeV}$ $\eta_{\text{part},\gamma p} > 0.$ z > 0.2z > 0.3

Extraction of Fragmentation Parameter

Fragmentation parameters extracted for RAPGAP 3.1 MC (direct +resolved) with excited D-states (ALEPH tune)

▷ for fragmentation used:

a.) Peterson parametrizationb.) Kartvelishvili parametrization

Extraction procedure:

 MC-files generated for various frag. parameters and from the χ² the most optimal parameter value obtained (correlated systematic errors taken into account)

Kartvelishvili Fits

Kartvelishvili :

$$f(z) \sim z^{\alpha}(1-z)$$

Peterson Fits

Peterson :
$$f(z) \sim z^{-1} [1 - \frac{1}{z} - \frac{\varepsilon}{1-z}]^{-2}$$

Summary of the Fragmentation Function Results

- Kartvelishvili and Peterson parametrizations provide equally good descriptions of the data
- hemisphere method appears to give harder fragmentation function than the jet method
- \triangleright difference (< 3σ) between hemisphere and jet method result may indicate imperfect MC description of hadronic final state in charm events

parametrization		Hemisphere method	Jet method
Peterson	${\mathcal E}$	$0.018\substack{+0.004\\-0.004}$	$0.030^{+0.006}_{-0.005}$
Kartvelishvili	α	$5.9^{+0.7}_{-0.6}$	$4.5^{+0.5}_{-0.5}$

H1 Prel. Data 2000

Comparison with e^+e^- **Experiments**

H1 hemisphere method

$$\langle \sqrt{s} \rangle \approx 10 \text{ GeV},$$

 $z = \frac{(E+p_L)_{D^*}}{\sum_{hem}(E+p)}$

CLEO $\sqrt{s} \approx 10$ GeV, z = p_D*/p_{max}

 $\begin{array}{l} \textbf{OPAL} \ \sqrt{s} = 91.2 \ \text{GeV}, \\ z = 2 E_{D^*} / \sqrt{s} \end{array}$

> although different observable definitions, spectra similar in shape

Conclusions

- ▷ charm fragmentation has been studied
- \triangleright extracted fragmentation fractions are in agreement with e^+e^-
- \triangleright fragmentation function for D^* was measured using two different methods (hemisphere and jet)
- parameters of Peterson and Kartvelishvili functions were extracted for LO+PS MC RAPGAP
- b the observed differences in extracted parameters for the two methods indicate inadequances in the description of the data by the model
- ▷ uncertainties due to charm fragmentation in other HERA measurements can be reduced (e.g. $F_2^{c\bar{c}}$)