Dijets in Diffractive DIS and Photoproduction

Matthias Mozer Univ. Heidelberg for the H1- Collaboration

XIII International Workshop on Deep Inelastic Scattering Madison, April 29th 2005

Introduction

compare DIS, γp in same kinematic range
test QCD- factorization in γp and DIS
direct access to gluon density of pomeron (IP)

important quantities:

- Q²: photon virtuality
- $x_{\mathbb{P}}$: fractional proton momentum loss
- $z_{\mathbb{P}}$: gluon momentum fraction

QCD-Factorization

Proven for DIS (J Collins, Phys. Rev D57 (1998) 3051, erratum ibid. D61 (2000) 019902)
 not proven for photoproduction

Diffractive Parton Densities

 determined from NLO-QCD- analysis of diffractive structure function

$$\sigma^{D} = \sum_{partonsi} f_{i}^{D}(x_{IP}, z_{IP}, Q^{2}) \otimes \sigma^{\gamma i}$$

parametrized as

$$f_{i}^{D}(x_{IP}, z_{IP}, Q^{2}) = f_{IP flux}(x_{IP}) \cdot f_{IP PDF}(z_{IP}, Q^{2})$$

- gluon carries 75% of pomeron momentum
- large uncertainty at high z_p

Single- Diffractive Dijets at the Tevatron

Direct and Resolved Processes at HERA

DIS ($Q^2 > 4$) and direct photoproduction ($Q^2 \cong 0$):

•photon directly involved in hard scattering process

•x_y=1

 x_{γ} : momentum fraction of

hard scattered parton in $\boldsymbol{\gamma}$

resolved photoproduction:

•photon fluctuates into hadronic system, which takes part in the hard scattering •contributes at low Q², large contribution in γp •x, < 1

Photoproduction as Hadronic Interaction

typical models that describe suppression at Tevatron assume secondary interactions of spectators as the cause ⇒ resolved contribution expected to be suppressed by factor 0.34 (Kaidalov, Khoze, Martin, Ryskin, Phys. Lett **B567** (2003) 61)

Data Sample and QCD predictions

DIS	L= $18pb^{-1}(96/97)$ 165 < W < 242GeV $x_{IP} < 0.03$ k_t - algorithm $p_{t,jet1} > 5 GeV$ $p_{t,jet2} > 4 GeV$	Photoproduction
4 <q<sup>2<80 GeV²</q<sup>		Q ² <0.01 GeV ²
DISENT Catani, Seymour, Nucl. Phys. B485 (1997) 29 [erratum-ibid. B510 (1997) 503	NLO- predictions	Frixione Program Frixione, <i>et al.</i> Nucl. Phys. B467 (1996) 339 e, Nucl. Phys. B507 (1997) 295
$\mu_r = E_T^*(jet1)$ $\mu_f = 6.2GeV = < E_T^*(jet1) >$	H1- Fit2002 Diffractive PDFs	μ _r = E _T *(jet1) μ _f = E _T *(jet1)

Diffractive Selection

 η_{max} < 3.2, no forward activity

reasonable agreement ⇒factorization holds NLO- errorbands: μ_r , $\mu_f \times 0.5/2$ not included:

hadronization uncertainty

•structure function uncertainty

Diffractive Dijets in γp H1 Diffractive γp Dijets • H1 Preliminary H1 2002 fit (prel.) FR NLO*(1+ δ_{had}) correl. uncert. RAPGAP (qd) 1000 qd 800 $d\sigma/dx_{\gamma}^{jets}$ (Χ_γ ets 700 dσ/dz_lp^J 600 Z 500 400 400 300 200 200 100 $x_{\gamma}^{0.9}$ 0.1 0.9 1 jets Z_{IP} 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1

QCD-prediction overestimates cross sections by factor 2 factorization broken!

Dijet Cross Sections in yp

Dependence on CMS Energy

y

Summary

DIS:

•dijet cross sections agree with NLO- QCD predictions
•factorization holds as predicted
•all DIS processes at HERA consistently described using diffractive PDFs, see talks by Matthew Beckingham (D*), Paul Laycock (F2D)

Photoproduction:

NLO- QCD- prediction significantly overestimates γp cross section for both direct and resolved contributions
shapes described, global suppression 0.5
factorization broken
reasons for discrepancy at high x_y unclear

Reconstruction of Kinematic Variables

DIS: $y = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2}$ $Q^2 = 4E_e E'_e \cos^2 \frac{\theta_e}{2}$ $x_{\gamma} = \frac{\sum_{jets} (E - p_z)^{\star}}{\sum_{z} (E - p_z)^{\star}}$ $z_{I\!\!P} = \frac{Q^2 + M_{12}^2}{Q^2 + M_v^2}$ $M_x^2 = (\sum_X E)^2 - (\sum_X \vec{p})^2$ $x_{I\!\!P} = \frac{Q^2 + M_X^2}{Q^2 + W^2}$

Photoproduction:

$$y = 1 - \frac{E'_e}{E_e}$$

 $Q^2 \quad < \quad 0.01\,(\approx 0)$

$$x_{\gamma} = \frac{\sum_{jets} (E-p_z)}{2yE_e}$$

$$z_{I\!\!P} = \frac{\sum_{jets} (E+p_z)}{2x_{I\!\!P} E_p}$$

$$M_x^2 = \frac{M_{12}^2}{z_{I\!\!P} x_{\gamma}}$$

 $x_{I\!\!P} = \frac{\sum_{x} (E+p_z)}{2E_p}$

