

Study of Jet Shapes

DESY Hamburg ková Martišíková

Motivation

Charm photoproduction: resolved comp. important at low x_{γ} wolf as the important at low x_{γ} (LO massless scheme) direct process: resolved photon processes:

- Select events containing at least 2 jets
- Tag the charm jet by a muon
- təl noum-non əht ətspitsəvnl 🔶

Can we see the large fraction of gluon jets?

Internal Jet Structure

:... is sensitive to both:

(noitetragert of QCD: nonpertubative part (e.g. fragmentation)

hard part of QCD: Different branching probabilities for a quark and gluon \Rightarrow different properties of quark and gluon

 $C_A/C_F = 9/4$ \Rightarrow more branchings expected for jets originating from gluons

Gluon jets are on average - broader than quark jets (with the same $p_t^{2^t}$) - contain more particles with softer p_t - spectrum

The Method

Main idea: distinguish processes using c/g jet structure differences

Data Selection: Charm

not biased by the muon jet only:

Data: H1 99/00 $\mathcal{L} \sim 48pb^{-1}$ Selection cuts: $\diamond Q^2 < 1GeV^2$ 8.0 > y < 0.8

:uonw 🔶

- $p_t > 2.5$ GeV - $35^{\circ} < \Theta^{\mu} < 130^{\circ}$
- :(mdinogla λ_t algorithm): \diamond 2 jets (inclusive λ_t algorithm):
- VəĐ (ð) $\Upsilon < \frac{33}{10} q$ -
- $20^\circ < \Theta^{jet} < 160^\circ$
- muon can be in each of them

Charm Purity

: v_{μ}^{β} and muon impact parameter δ_{μ} :

- \Rightarrow enrich charm by $p_t^{tel} < 1$ GeV
- :(VəÐ 1 > $^{l_{2}}_{t}q$ rot) (for $p_{t}^{r_{el}} <$ 1 GeV):
- , δ bns ${}^{l_{2}l_{1}}_{4}q$ of tit QS : $\% \pm \$7$ -
- sisylans off in the analysis 2% inclusive MC \leftarrow used in the analysis

Jet Shape - Detector Level Measurement

Mária Martiš Iková, DESY

photon: GRV-LO

 ∇x wol ts stəi noulg seal teagues at low x_γ

Jet Shape - Comparison to Other Models

At low x_γ Cascade closer to the data than Pythia Marginally worse at high x_γ

8

Charm: Dependences of Jet Shape

Charm: Different models

01 2005 lingA 82

Jet Shapes for Dijets in Photoproduction

Data described by the MC very well (Detector level)

Pythia: incl. γp

Dijets: Dependences of Jet Shape

Comparing Charm and Dijet Events

Comparing Charm and Dijet Events

28 April 2005 144

Summary

.ni beibuts sequated in:

Dijets: ($\sim 75\%$ light quark events)

At high x_{γ} jet shapes similar \leftarrow direct At low x_{γ} jet shapes different \leftarrow resolved

→ jets from charm events narrower (quark-like)

PYTHIA: Dijets well described everywhere (Pythia predicts broader jets). Charm: deviations at low x_{γ} (Pythia predicts broader jets)

CASCADE: Somewhat closer to the data

Backup - processes

	C		47	66 - 66
_	Ч	_	VC	$bb \leftarrow bb$
	Z	51	15	spn
21	33	09	75	Excit.
12	43	91	3	Direct
Charm	J əji D	Charm	∫ijet	Process
רא $_{sqo}^{ \mathcal{L}} x$ ק sqo		$\sum_{sqo}^{\mathcal{L}} x$ моך		

Backup - Systematic Studies

CHARM

$68.0\pm$	7.1土	Statist.	
$75.0\pm$	0.1±	's/	s lstoT
± 0.02	± 0.013	%3±	Energy scale clusters
1.0-	-0.38	$\phi \pm 2^{\circ}, \theta \pm 0.04$	jet axis
$05.0\pm$	$6.0\pm$	∓20\20%	uds fraction
± 0.20	± 0.35	$\pm 20\%$	b fraction
$(\%)_{lotot}\psi\delta$	$(\%) {}^{{}_{\mathrm{SL}} \cdot 0 > {}_{sqo}^{\mathcal{L}} x} \phi g$	Source	

DIJETS

-0.34	55.0 -		Total	
± 0.02	± 0.02	%5±	Energy scale clusters	
4.0 - 0.34	55.0 -	$\mp 5_{\circ}$	jet axis	
$(\%)_{lotot}\psi\delta$	$(\%) {}^{{}_{\mathfrak{G}\mathcal{L}},0>_{sqox}} \psi g$	Source		

Model Uncertainties:

$_0 \sim$	$_0 \sim$	$\dots \pm {}_{\cdot s \tau_{\vartheta} \tau_{\vartheta} q} {}_{\vartheta}$
$_0 \sim$	6.6+	CASCADE
E.1+	7.1+	.full .fluM on AIHTY9
$(\%)_{lotot}\psi\delta$	$(\%) {}^{97.0>sqo}_{ox} \psi s$	

Backup - Charm Control Plots I

Backup - Charm Control Plots II

Backup - Control Plots for Dijets

*U pnisu inementement using Dackup - ZEUS measurement using D

G prizu fragment using Dackup - ZEUS measurement using D^

