Measurement of forward jet production at low x in DIS

on behalf of the
H1 collaboration

DIS 2005, Madison USA

Albert Knutsson, University of Lund

Outline

• Why is the forward region important?
• Forward jet selection
• Theoretical Calculations / MC Models
• Results
• Conclusions
Why Forward?

F_2 - very inclusive - very well described by DGLAP.

Dijet cross-section, Jet Rates - measure hard subsystem.

Energetic jet/particle in forward region - information on full evolution ladder.
Test QCD at small x.
Signals of parton dynamics beyond DGLAP?

Events with energetic jet in the forward region.

Target phase space for evolution in x
(BFKL)
\[x_{jet} \gg x_{Bj}. \]

Suppress phase space for evolution in Q^2.
(Suppress DGLAP)
\[p_t^{2, \text{forward jet}} \sim Q^2. \]
Jet algorithm: Inclusive k_t-algorithm

Events with energetic jet in the forward region.
Target phase space for evolution in x.
Suppress phase space for evolution in Q^2.

Forward jet

$1.74 < \eta_{jet} < 2.79$

$p_t > 3.5$ GeV

Suppress QPM

$x_{JET} = \frac{E_{JET}}{E_p} > 0.035$

Suppress DGLAP

$0.5 < \frac{p_t^2}{Q^2} < 5$

If $N_{\text{forward jet}} > 1 \rightarrow$ Most forward jet is selected
Kinematic range and Measurements

Kinematic range

\[5 < Q^2 < 85 \text{ GeV}^2 \]
\[0.1 < y < 0.7 \]
\[0.0001 < x_{Bj} < 0.004 \]
\[10 \text{ GeV} < E'_e \]

Measurements

Forward jet cross-sections

\[\frac{d\sigma}{dx_{Bj}} \]
\[d^3\sigma \]
\[\frac{d\sigma}{dx_{Bj} dp_t^2 dQ^2} \]

2+Forward jet cross-sections, \(\frac{d\sigma}{d\Delta\eta_2} \)

As a function of the rapidity

between the forward jet and the most forward di-jet.
QCD Models

RAPGAP: LO ME+PS: **DGLAP** evolution where the parton ladder is strongly ordered in Q^2 and k_t^2.

RAPGAP RES γ: RAPGAP with an additional DGLAP evolution parton ladder from the hard subsystem to the photon.

PDF: CTEQ6L, γPDF: SaS1D

Scales: $\mu_r^2 = \mu_f^2 = Q^2 + p_t^2$
QCD Models continue...

CDM (ARIADNE): LO ME (QPM, BGF). Color Dipole Model (QCDC and higher orders). Random walk in k_t.

![Diagram of QCD processes](image)

PDF: CTEQ6L

CASCADE: LO ME. Initial state CCFM partons showers with emissions ordered in angle.
Fixed Order Calculations

DISENT: NLO di-jet (α_s^2).

(Forward jet cross-sections.)

NLOJET++: NLO 3-jet (α_s^2).

(2+forward jet cross-sections.)

(Need to correct for hadronization effects.)
\[
\frac{d\sigma}{dx_{Bj}}
\]

Comparison to Exact Calculations (DISENT)

H1 forward jet data

- $H1$ prelim.
- E scale uncert.
- NLO di-jet $1+\delta_{HAD}$
- $0.5 \mu_{r,f} < \mu_{r,f} < 2 \mu_{r,f}$
- PDF uncert.
- LO di-jet $1+\delta_{HAD}$

\[\mu_r^2 = p_t^2\]
\[\mu_f^2 = \langle p_{t,fwdjet}^2 \rangle = 45 \text{ GeV}^2\]
\[0.25 \mu_{r,f}^2 < \mu_{r,f}^2 < 4 \mu_{r,f}^2\]

PDF: CTEQ6M

- NLO di-jet ok for larger x_{Bj}.
- LO contribution (α_s) \ll NLO contribution (α_s^2)
\[\frac{d\sigma}{dx_{Bj}} \]

Comparison to QCD Models

- **PS with DGLAP** evolution similar to NLO.
- **RG DIR+RES** best.
- **CDM and RG DIR+RES** too low for lower \(x_{Bj} \).
- **CASCADE** to low at lower \(x_{Bj} \), to high at higher \(x_{Bj} \).
- **All models** to low in lowest \(x_{Bj} \)-bin.
Cross-section as a function of x_{Bj} in 3×3 $p_t^2 - Q^2$ bins. No $\frac{p_t^2}{Q^2}$-cut.

(Different regions in $\frac{p_t^2}{Q^2} = r$.)

Large x_{Bj}, Q^2 and $p_t^2 \Rightarrow$ NLO describes data
Smaller x_{Bj}, Q^2 and $p_t^2 \Rightarrow$ NLO insufficient

Note different ranges in x_{Bj}!

$$\frac{d^3\sigma}{dx_{Bj}dp_t^2dQ^2}$$

\[\mu_r^2 = p_t^2, \quad \mu_f^2 = <p_{t,fwdjet}^2> = 24, 55 \text{ resp. } 183 \text{ GeV}^2 \]
Comparison to QCD models.

\[p_T^2 < Q^2 \ (r < 1) - \text{DGLAP-like dynamics} \]

\[p_T^2 \sim Q^2 \ (r \sim 1) - \text{BFKL-like dynamics} \]

\[p_T^2 > Q^2 \ (r > 1) - \text{resolved } \gamma \text{-like dynamics} \]

- **RAPGAP DIR** - fails, but is closest to the data in the most DGLAP like region
- **RAPGAP DIR+ RES \(\gamma \)** - Good
- **CDM** - Alright, but problems in res. \(\gamma \) region.
- **CASCADE** - Goes in the right direction.
2+forward jet cross-section, $\frac{d\sigma}{d\Delta\eta_2}$

Select two hardest jets ($p_t > 6$ GeV) JET1 and JET2 - in addition to the forward jet ($p_t > 6$ GeV) 2+Forward Jet Event. (No $\frac{p_t^2}{Q^2}$-cut.)

$$\eta_e < \eta_{JET1} < \eta_{JET2} < \eta_{FWDJET}$$

$$\Delta\eta_1 = \eta_{JET2} - \eta_{JET1}$$
$$\Delta\eta_2 = \eta_{FWDJET} - \eta_{JET2}$$

$\Delta\eta_1 < 1$: small η separation between the two hard jets - small x_g - room for many emissions - long ladder favoured

$\Delta\eta_1 > 1$: large η separation between the two hard jets - Shorter parton ladder
2+forward jet cross-section

NLO 3-jet $1 + \delta_{\text{had}}$ calculations

(NLOJET++)

\[\mu_r^2 = \mu_f^2 = \frac{p_{i,\text{JET}1}^2 + p_{i,\text{JET}2}^2 + p_{i,\text{FWDJET}}^2}{3} \]

\[0.25 \mu_{r,f}^2 < \mu_{r,f}^2 < 4 \mu_{r,f}^2 \]

Data within scale uncertainty for $\Delta\eta_1 > 1$ ("short ladder"-region)
2+forward jet cross-section, \(\frac{d\sigma}{d\Delta\eta_2} \)

QCD Generators

- **CDM close** to describe the data.

- **CASCADE** closer to data than RG-DIR

- **ME+PS** fails, except for at high \(\Delta\eta_2 \) where \(\Delta\eta_1 > 1 \) (the ”non-BFKLish”-region), as is the case for the resolved photon model.
Conclusions - Forward Jet Measurement

- Large x_{Bj}, Q^2 and p_t^2 → NLO dijet describes forward jet cross section. Small x_{Bj}, Q^2 and p_t^2 → NLO dijet fails.

- DGLAP LO ME+PS (RAPGAP) and NLO di-jet fail for fwd jet cross-sections
 - CDM and LO ME+PS DIR+RESolved γ OK (except 2+fwdjet)
 - CASCADE is in improvement compared to simple DGLAP evolution.

- 2+fwd cross-section -
 Models not ordering the transverse momenta still predict a higher cross-section. CDM good.

- Data suggests that more hard radiation (CDM, RES-γ, CASCADE) is needed compared to NLO and simple DGLAP evolution.

- Models that break the ordering of transverse momenta give better agreement with data (CDM, RES-γ, CASCADE), while simple DGLAP evolution restricts the phase space too much.