Multijet Production at High Q²

Thomas Kluge, DESY on behalf of the H1 Collaboration

- Motivation
- Measurement
- QCD Analysis
- Summary

DIS 2005 XIII International Workshop on Deep Inelastic Scattering

QCD and **Deep Inelastic Scattering**

Perturbative QCD

hard scales: Q² and jet E_t

Breit frame: jet at Born level has no E_t may have high E_t in lab. frame

require minimum E_t in Breit frame -> pQCD reliable

But: small cross section, tri-jet NLO needed (NLOJET++ 2.0.1)

H1 Multijet Measurement

H1: measurement of differential dijet and trijet cross section in neutral current DIS at high Q²

kinematic range: √s=318GeV, 150<Q²<15000GeV², 0.2<y<0.6, L_{int}=65.4pb⁻¹

jet definition: incl. k, cluster algorithm,

 $E_t > 5GeV$ -1.0< $\eta_{lab} < 2.5$ $M_{jj} > 25 GeV$ $M_{jjj} > 25 GeV$

High Q²:

- smaller correction from higher orders
- reduced μ_r dependence

Di- and Trijet Cross Sections

- Data well described
- Highest Q² bin lacks electroweak contributions

Di- and Trijet Cross Sections

Trijet to Dijet Cross Section Ratio

 $R_{_{3/2}} := \sigma_{_{3jet}} / \sigma_{_{2jet}} \text{ incl. jet cross sections, cancellations of uncertainties}$ Born Level: $R_{_{3/2}} \sim \alpha_{_{s}}$ Used here: $R_{_{3/2}} \sim c_{_{1}} \alpha_{_{s}} + c_{_{2}} \alpha_{_{s}}^{^{2}}$

Theoretical uncertainty from μ_r reduced to 5%

Determination of α_{s}

Experimental error on $R_{3/2}$ translated to α_s ~linearily

Determination of α_s

- R_{3/2} determined at four points of μ_r²=Q²
- Corresponding $\alpha_s(m_z)$ via RGE
- Fit average with χ^2 minimisation
- $\alpha_s(m_z)$ can be evolved back to Q
- α_s(m_z) from R_{3/2} in DIS consistent with world average

Determination of α_s

H1 Preliminary				
Q ² / GeV ²	α _s (mZ)	statistical	systematical	theoretical
150-220	0.1166	±0.0028	+0.0035	+0.0035
			-0.0034	-0.0054
220-350	0.1131	±0.0035	+0.0061	+0.0052
			-0.0066	-0.0074
350-700	0.1239	±0.0036	+0.0043	+0.0059
			-0.0044	-0.0070
700-5000	0.1167	±0.0045	+0.0074	+0.0089
			-0.0077	-0.0089
Average	0.1175	±0.0017	+0.0050	+0.0054
			-0.0050	-0.0068

- Theoretical error 5-6% limiting mainly renormalisation scale, pdf <1%
- Experimental systematic error dominated by hadronic energy scale uncertainty

Summary

- Multijets at high Q² DIS described well by pQCD at O(α_s^3) (NLOJET++)
- Ratio R_{3/2}: experimental and theoretical uncertainties cancel partly
- Competitive determination of $\alpha_s(m_z)$ at four values of Q² consistent with world average
- Need electroweak contributions in NLO calculation to include highest Q² bin

 $\alpha_{s}(m_{z})=0.1175\pm0.0017\pm0.005$ +0.0054 (stat.+syst.+theo.)