

he Universit f Mancheste

Diffractive photoproduction of ρ mesons with large momentum transfer at HERA

Carl Gwilliam Manchester University

On behalf of the H1 Collaboration

Proton dissociation dominates at large |t|

 $\begin{array}{lll} Q^2 & & \mbox{Virtuality of the } \gamma^{\star} & & \sim 0 < Q^2 < 100 \ {\rm GeV}^2 \\ W_{\gamma p} & & \mbox{CM energy of the } \gamma p \ {\rm system} & & 20 < W_{\gamma p} < 290 \ {\rm GeV} \\ t & & \mbox{(4 momentum transfer at the p vertex)}^2 & & \sim 0 < |t| < 30 \ {\rm GeV}^2 \\ V & & \mbox{Vector meson} & & \rho^0, \, \omega, \, \phi, \, J/\psi, \, \psi(2s), \, \Upsilon(1s) \end{array}$

 \Rightarrow Simultaneous probe of several different kinematical quantities

Perturbative QCD

Lowest Order Exchange

Higher Order Exchange

1. Photon fluctuates into $q\bar{q}$ pair

- 2. Lowest order exchange = 2 gluons
- 3. Meson wavefunction is needed to form V

Sums perturbative series in α_s

 \Rightarrow Effective gluon ladder ("QCD Pomeron")

Can be described by BFKL evolution at low \boldsymbol{x}

Calculations require hard scale \Rightarrow possibilities are: Q^2 , |t|, M_V^2

BFKL Model

BFKL LL:

- Sums terms in $\alpha_s^n \log^n(1/x)$
- "Random walk" with no transverse momentum k_T ordering but strong longitudinal momentum ordering: x_i ≫ x_{i+1} ≫ ... ≫ x
 Poludinowski *et al.*[†]:
- \bullet Challenge is to simultaneously describe $\left|t\right|$ spectra and SDMEs
- LL BFKL with meson production factorised from the hard subprocess using a set of meson light-cone wavefunctions [twist-3]
- Free parameters:
 - $lpha_s^{IF}$: coupling of the two gluons to each impact factor
 - α_s^{BFKL} : the gluon couplings inside the gluon ladder
 - $\Lambda^2 = m_v^2 \gamma t$: undefined energy scale
- Naively expect light q mesons to be predominantly longitudinal. Use constituent q mass $m = m_V/2$ to introduce large chiral odd contribution & enhance production of transverse mesons

[†] [1] R. Enberg *et al.*, JHEP **0309** (2003) 008 [hep-ph/0306232] [2] G. G. Poludniowski *et al.*, JHEP **0312** (2003) 002 [hep-ph/0311017]

Data Selection

$$\gamma + p o
ho^0 + Y$$
 with $ho^0 o \pi^+\pi^- \, (\sim 100\%)$

Selection:

- 2000 data period $\Rightarrow \mathcal{L} = 20.1 \ \mathrm{pb}^{-1}$
- Two charged tracks (pion candidates)
- No additional neutral clusters
- Electron detected in 44 m tagger

Kinematics:

- Photoproduction $Q^2 < 0.01 \ {\rm GeV^2}$
- Tagged electron $75 < W < 95 {
 m GeV}$
- |t| range $1.5 < |t| < 10.0 \, {\rm GeV^2}$
- Proton remnant mass $M_Y < 5 \,\mathrm{GeV}$

Number of selected events ≈ 3000

Monte Carlo Simulation

DiffVM Monte Carlo:

- Diffractive Vector Meson production
- Simulates soft diffraction in ep collisions
- Based on Vector Dominance Model
- Detailed description of p dissociation

- Tuned to describe data |t| dependence
- Re-weighted to take into account
 - s-channel helicity non-conservation

Data and Monte Carlo are in good agreement

Invariant Mass Distribution

Clear evidence for a ρ meson mass peak

• Fitted with a relativistic Breit-Wigner

$$BW_{\rho}(M_{\pi\pi}) = \frac{M_{\pi\pi}m_{\rho}\Gamma(M_{\pi\pi})}{(m_{\rho}^2 - M_{\pi\pi}^2)^2 + m_{\rho}^2\Gamma^2(M_{\pi\pi})}$$
$$\Gamma(M_{\pi\pi}) = \Gamma_{\rho} \left(\frac{q^*}{q_0^*}\right)^3 \frac{m_{\rho}}{M_{\pi\pi}}$$

• At lower |t| skewing effects have been observed \Rightarrow E.g. Ross-Stodolsky:

$$\frac{dN}{dM_{\pi\pi}} = f_{\rho} BW_{\rho} \left(\frac{m_{\rho}}{M_{\pi\pi}}\right)^{n}$$

$$e \qquad e \qquad e$$

$$f_{\rho} \pi^{+} \qquad f_{\pi} \pi^{+} \qquad f_{\pi} \pi^{+}$$

p p

Dependence on |t|

Fit:

- Power-like behaviour is expected at large $|t| \Rightarrow$ Data fitted with $|t|^{-n}$ $n = 4.41 \pm 0.06 \text{ (stat.)}^{+0.07}_{-0.05} \text{(syst.)}$ BFKL Model:
- BFKL model well describes data using

$$\label{eq:alpha} \begin{split} \alpha_s^{IF} &= 0.17\\ \alpha_s^{BFKL} &= 0.25\\ \gamma &= 1\\ \text{at} \left< W \right> &= 87.3 \ \text{GeV} \ \text{and} \ Q^2 &= 0 \ \text{GeV}^2 \end{split}$$

• t slope quite sensitive to the M_Y cut. Here evaluated for $M_Y < 5 \text{ GeV} \Rightarrow$ theory predicts steeper dependence than for ZEUS, where $M_Y < 25 \text{ GeV}$

Previous Measurements of SDMEs

Photoproduction:

- Can only measure 2 angular dists: $\theta^* \& \phi^*$ \Rightarrow Allows measurements of 3 of the 15 spin density matrix elements (SDMEs)
- s channel helicity conservation (SCHC)
 ⇒ Vector meson retains helicity of photon
 ⇒ All 3 SDMEs are predicted to be zero
- \bullet Heavy J/ψ data is consistent with SCHC
- In contrast, lighter ρ meson violates SCHC
- 2 dimensional fit needed to extract 3 SDMEs: $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^* d \phi^*} = \frac{3}{4\pi} \left[\frac{1}{2} (1 \mp r_{00}^{04}) \pm \frac{1}{2} (3r_{00}^{04} - 1) \cos^2 \theta^* + \sqrt{2} \operatorname{Re}[r_{00}^{10}] \sin 2\theta^* \cos \phi^* \mp r_{1-1}^{04} \sin^2 \theta^* \cos 2\phi^* \right]$

Dependence on $\cos heta^*$

1 Dimensional Fit:

• Data well described by both full fit

 $rac{d\sigma}{d\cos heta^*} \propto 1 - r_{00}^{04} + \left(3r_{00}^{04} - 1
ight)\cos^2 heta^*$ and the prediction from SCHC

 r_{00}^{04} :

• Production of longitudinally polarised ρ (0) from transversely polarised γ (+)

$$r_{00}^{04} = \frac{\langle |M_{+0}|^2 \rangle}{\langle |M_{++}|^2 + |M_{+0}|^2 + |M_{+-}|^2 \rangle}$$

• $r_{00}^{04} \neq 0 \Rightarrow$ Helicity "Single Flip"

Dependence on ϕ^*

- 1 Dimensional Fit:
- Data well described by the full fit

$$\frac{d\sigma}{d\phi^*} \propto 1 - 2r_{1-1}^{04} \cos 2\phi^*$$

but differ significantly from SCHC

 r_{1-1}^{04} :

• Production of transversely polarised $\rho(\pm)$ from oppositely polarised $\gamma(\mp)$

$$r_{1-1}^{04} = \frac{1}{2} \frac{\langle M_{++}M_{+-}^* + M_{+-}M_{++}^* \rangle}{\langle |M_{++}|^2 + |M_{+0}|^2 + |M_{+-}|^2 \rangle}$$

• $r_{1-1}^{04} \neq 0 \Rightarrow$ Helicity "Double Flip"

Dependence of SDMEs on |t|

H1 Preliminary ($\gamma p \rightarrow \rho Y$)

- Helicity single flip amplitude consistent with zero \Rightarrow production dominated by transversely polarised ρ mesons
- Small r_{00}^{04} well described by model
- Non-zero helicity double flip amplitude
 ⇒ confirmation of s-channel helicity
 non-conservation in ρ mesons
- Large r_{1-1}^{04} qualitatively agrees with model but prediction too big at lower |t|
- ZEUS r_{10}^{04} data differs significantly from zero \Rightarrow production of longitudinal ρ meson (+) from transverse γ (0)
- BFKL model unable to describe r_{10}^{04} as prediction is too large and negative

Summary

- Photoproduction of ho mesons measured up to $|t|=10~{
 m GeV^2}$
- Power-like |t| dependence with $n = 4.41 \pm 0.06 \text{ (stat.)}_{-0.05}^{+0.07} \text{(syst.)}$ observed and is well described by BFKL model of Poludinowski *et al.*
- The single flip r_{00}^{04} and double flip r_{1-1}^{04} SDMEs are measured
 - Small measured single flip amplitude agrees well with BFKL model and indicates transverse production of ρ mesons dominates
 - Large measured double flip amplitude confirms *s*-channel helicity
 non-conservation and is in qualitative agreement with BFKL model
- Model unable to describe value of r_{10}^{04} obtained from other measurements since its prediction is both too large and negative