13th International Workshop on Deep Inelastic Scattering Madison, April 27th - May 1st , 2005

Analysis of the anti-charmed baryon state at H1

Karin Daum - Wuppertal

on behalf of

Outline:

- Observation of the D*p(3100) ¹⁾ resonance at H1
- Summary from searches for D*p(3100)
- Model assumptions for the analysis
- Acceptance corrected ratios $\sigma(D^*p(3100))/\sigma(D^*)$
- Conclusions
- ¹⁾ Since the spin is unknown "D*p(3100)" rather than " Θ_c " will be used

Observation of the D*p(3100) resonance @ H1

A.Atkas et al., Phys. Lett. B588(2004)17. HERA-I, 75 pb⁻¹

Results of D*p(3100) searches

H1 observation in $ep \rightarrow c\overline{c} X$

Negative results for θ_c from:

ALEPH	$e^+e^- ightarrow Z^0 ightarrow c\overline{c}$
FOCUS	$\gamma N \rightarrow c\overline{c} X$
CDF	$p\overline{p} \rightarrow c\overline{c} X$
BELLE	$e^+e^- \rightarrow Y(4s) \rightarrow B^0\overline{B}^0$

ZEUS $ep \rightarrow c\overline{c} X$

Different physics processes investigated (except ZEUS) **Detailed analysis of D*p(3100) from H1 needed**

Model assumptions for the analysis

Basic production process* of charmed hadrons: BGF

* LO QCD

pseudo-rapidity $\eta = -\log(\tan(\Theta/2))$ D*-inelasticity $z = (P \cdot p_{D^*})/(P \cdot q)$ Assumption:

c-quarks from the hard sub-process interacts with QCD vacuum to create charmed hadrons

e.g. D^* , Λ_c , $D^*p(3100)$

(ordinary fragmentation process)

Technical procedure for correcting data:

•Use RAPGAP 3.1

•Mimic $D^*p(3100)$ by appropriate modification of mass and decay modes of D_1 and D_2

•No spin assignment done, i.e. isotropic decay

The model will be normalised to the total D*p(3100)/D* yield when comparing with data

Acceptance corrected R_{cor}(D*p(3100)/D*)

Kinematic region: $1 < Q^2 < 100 \text{ GeV}^2 \& 0.05 < y_e < 0.7$

- 1. In the visible D* range as given in our publication: preliminary
- Visible D*p range: Pt(D*p)>1.5 GeV, -1.5<η(D*p)<1
- Visible D* range: Pt(D*)>1.5 GeV, -1.5<η(D*)<1, z(D*)>0.2 (applied to inclusive D* and to D*s from D*p(3100) decay)

$$R_{cor}(D^{*}p(3100)/D^{*}) = 1.59\pm0.33\%_{-0.45}^{+0.33}\%$$

95% Upper limit from ZEUS for DIS : <0.59 % in different phase space: Q²>1 GeV² & y_e<0.95 pt(D*)>1.35 GeV, |η(D*p)|<1.6, pt(D*)/ΣE_t^{Θ>10}>0.12

Systematic errors include uncertainties due to: D*, D*p selection, veto for D_1D_2 , background shape, dE/dx-measurement, Variation of D*p(3100) fragmentation and pseudo-rapidity η

Acceptance corrected R_{cor}(D*p(3100)/D*)

Kinematic region: $1 < Q^2 < 100 \text{ GeV}^2 \& 0.05 < y_e < 0.7$

- 1. In the visible D* range as given in our publication: preliminary
- Visible D*p range: Pt(D*p)>1.5 GeV, -1.5<η(D*p)<1
- Visible D* range: Pt(D*)>1.5 GeV, -1.5<η(D*)<1, z(D*)>0.2 (applied to inclusive D* and to D*s from D*p(3100) decay)

- 2. Extrapolated to the full D* phase space in D*p(3100) decay:
- •Visible D*p/D* range: Pt>1.5 GeV, $-1.5 < \eta < 1$ (applied to D* for inclusive D* and to D*p for D*p(3100))

Systematic errors include uncertainties due to: D*, D*p selection, veto for D_1D_2 , background shape, dE/dx-measurement, Variation of D*p(3100) fragmentation and pseudo-rapidity η

$\sigma(D^*p(3100))/\sigma(D^*)$ vs. event kinematics

Kinematic region:

 $1 < Q^2 < 100 \ GeV^2 \& 0.05 < y_e < 0.7$

ŝ calculated from D*/D*p in γp-system:

$$\hat{s}_{obs} = \frac{p_t^{*2} / x_{obs} + m_c^2 x_{obs}}{z(z / x_{obs} - 1)}$$

Invariant mass ŝ depends on: of D*, D*p in γp-system inclasticity z of D*, D*p fregnantation value x_m of D*, D*p (I'll come to the fragmentation issue later)

$\sigma(D^*p(3100))/\sigma(D^*)$ vs. event kinematics

Statistical errors only

Kinematic region:

$1 < Q^2 < 100 GeV^2 \& 0.05 < y_e < 0.7$

Karin Daum

Fragmentation function of D*p(3100), D*

Analysis¹ performed in γp :

Conclusions

•Preliminary results on acceptance corrected ratio D*p/D* in DIS in the visible D* region is

 $R_{cor}(D^{*}p(3100)/D^{*}) = 1.59\pm0.33\%^{+0.33}_{-0.45}\%$

- D*s from D*p(3100) decay are significantly softer than normal D*s
- D*p(3100) production in central η_{lab} suppressed
- D*p(3100) produced close to the photon direction
- D*p(3100) fragmentation is hard
- The simple fragmentation approach with isotropic decay •does describe W and Q² of D*p(3100) production •does not describe D* properties from D*p(3100) decay •does reasonably well for properties of D*p(3100), except for η_{lab} and η^*

Backup slides

Physics related slides

Remarks on D*p search by ZEUS

We observe:
D* from D*p(3100) decay take only little energy of the event
Production of D*p(3100) is different in η from inclusive D* production
The charged and neutral multiplicity in D*p(3100) events tends to be higher than in ordinary D* events

The ZEUS cut $pt(D^*)/\Sigma Et\Theta > 10$ for background suppression is designed just to remove high multiplicity events with little energy for the D* Furthermore:

The kinematic & visible D* regions are not directly comparable

D*signals vs. X_F from EPJ C16(2000)597

At LEP D* fragmentation function significant softer than at HERA due to QCD evolution

D*'s from Θ_c should lead to a shift in X_E by about -0.3

D*'s from charm

Likely to be NOT in disagreement

Remarks on D*p search by Belle

Exclusive channel in B^o decay:

 $B(B^{0} \rightarrow \Theta_{c}\overline{p}\pi) \times B(\Theta_{c} \rightarrow D^{*}p) / B(\Theta_{c} \rightarrow D^{*}p\overline{p}\pi) < 11\% @ 90\% C.L.$

Not in contradiction with H1 result

They indirectly conclude from their limit on $B(B^0 \rightarrow \Theta_c \overline{p}\pi) \times B(\Theta_c \rightarrow D^-p) / B(\Theta_c \rightarrow D^-p \overline{p}\pi) < 1.2\% @ 90\% C.L.$ assuming the Θ_c decay into pseudoscalar plus proton should be favoured they would not be in agreement with H1

BUT: it is not clear which decay mode is favoured, Depends on spin of the D*p(3100)

Remarks on D*p search by CDF

Charm production via gluon gluon fusion Similar to BGF at HERA

CDF charm trigger sensitive to central rapidity in c.m.s. $|\eta| < 0.7$ with 2 svtx tracks with $p_t > 2$ GeV

H1 sees: Soft D*s from D*p(3100)

not central in c.m.s.

Karin Daum

Remarks on D*p search by FOCUS

Fixed target experiment 180 GeV photons on ⁹Be 350 Number per 0.05 GeV/c² \rightarrow hadronic mass W~18 GeV 300 Hera: 60<W<280 GeV 250 $D_c^h(z)$ 200 γ (q) D c or b M(DD) 150 c or b D $g(x_g)$ 100 nucleon 50 Large phase space suppression for Θ_c in FOCUS 0 4.5 5 4 No Monte Carlo used by FOCUS

Hera Θ_c threshold 5.5 6.5 6 $M(D\overline{D}) (GeV/c^2)$

D* fragmentation

Karin Daum

Backup slides

Analysis related slides

Typical D*p candidates

Systematic error for $\sigma(\Theta_c)/\sigma(D^*)$ in visible D* region

Relative systematic errors:

Total

Total systematic error :

-0.45+0.33%

- 28 + 21 %

Systematic error for $\sigma(\Theta_c)/\sigma(D^*)$ for full D* region

Relative systematic errors:

∆dm window 1.5 MeV instead of 2.5 MeV - 10 % Fit with our background model instead of $(M(D^*p)-M(D^*))^{\alpha}$ - 14 % z(D*)>0.1 instead of z(D*)>0.2 - 8 % Exclude D_1, D_2 signal region by $|m(D^*\pi)-2.45|>50$ MeV + 17 % Selection with $x_{obs}(\Theta_c)$ instead of $z(D^*)$ - 15 % Uncertainty in dE/dx ± 10 % + 28 % Re-weighting of Θ_r fragmentation function* - 4 % Re-weighting of $\eta(\Theta_c)$ distribution

Total

Total systematic error :

If the $x_{obs}(\Theta_c)$ cut is used instead of the $z(D^)$ cut the systematic uncertainty due to fragmentation reduces to 11%

- 26 + 34 %

Acceptance corrected Θ_c/D^* yield ratio-III : shat

But: we observe charmed hadrons instead of quarks

Normal procedure: Replace quantities of c-quark by those of D* We measure also fragmentation variable $x_{obs} \rightarrow$ we can do better

$$\hat{\mathbf{S}} = \frac{p_{t}^{2}(D^{*})/x_{obs}(D^{*})+m_{c}^{2}x_{obs}(D^{*})}{z(D^{*})(z(D^{*})/x_{obs}(D^{*})-1)}$$

Remarks on $\sigma(\Theta_c \rightarrow D^*p) / \sigma(D^*)(x_{obs})$

 $x_{obs}(D^*)$ very soft ! For $x_{obs}(D^*)>0.5$: $\sigma(\Theta_c \rightarrow D^*p)/\sigma(D^*)=1.08\pm0.31\%$ For $x_{obs}(D^*)>0.7$: $\sigma(\Theta_c \rightarrow D^*p)/\sigma(D^*)=0.17\pm0.13\%$

Karin Daum

Reconstruction of shat

Systematics: dE/dx

Check of dE/dx selection efficiencies for protons using Λ^0 in data and SPQ MC

 p_t and η distributions for protons from Λ^0 may be different for those from Θ_c \Rightarrow use systematic error of ± 10%

Proton selection

Use dE/dx for background suppression

Opposite sign D*p mass distribution

narrow resonance at M=3099 \pm 3(stat.) \pm 5 (syst.) MeV

signal visible in different data taking periods

Signal in both $D^{*-}p$ and in $D^{*+}\overline{p}$

 25.8 ± 7.1 Events

 23.4 ± 8.6 Events

Signal of similar strength observed for both charge combinations at compatible M(D*p)

Signal in like sign D*p combinations?

Is the D*-p¹ signal due to protons?

Physics changes on-resonance?

 Single particle momentum spectra are steeply falling
 →This feature is preserved in the combinatorial background of invariant mass analyses

Harder spectrum for particles from decay due to mass release

Harder spectrum for particles from decay of charmed hadrons – due to hard charm fragmentation

Physics changes on-resonance?

Fit slope with $\alpha \exp \{-\beta p(p)\}$

Physics changes on-resonance?

Kinematic tests

2-Body Decay

$$M^{2} = (P_{1} + P_{2})^{2}$$
$$= (m_{D^{*}}^{2} + m_{X}^{2} + 2E_{D^{*}}E_{X} - 2\vec{p}_{D^{*}}\vec{p}_{X})$$

Mass M independent of decay angle ⊕* only for correct mass assignment

Band like structure visible in the M(D*p)-M(D*x) plane in data?

Monte Carlo expectation

Kinematic test: D^*p vs. $D^*\pi$

Significance estimate

Search for charmed PQ, $\theta_c \rightarrow D^*p$, in ZEUS

Details of fit

D* signal in DIS and photoproduction

DIS cleaner signal
 photoproduction: supporting evidence

Acceptance effects?

 $M(D^*p) = m(K\pi\pi p) - m(K\pi\pi) + M_{PDG}(D^*)$

Reflections from decays to $D^*\pi$?

Could signal be due to decay $D^{0*} \rightarrow D^{0}\gamma$?

Lots of further kinematic test

- Reflections from a possible signal in D*K mass distribution: ruled out
- Possible contributions from $D^{*0} \rightarrow D^0 \gamma$ with γ -conversion: ruled out
- Possible contributions from $D_{S1} / D_{S2} \rightarrow D^0 K$: ruled out
- Possible peak structures in all possible mass correlations with all possible mass hypotheses of the particles making the D* and the D*p system to search for real or fake resonances, e.g Λ, Δ⁰, Δ⁺⁺, K⁰_S, φ, f² no enhancements found
- Possible peak structures in all possible mass correlations among the proton candidate the remaining charged particles of the event with all possible mass assignments to search for real or fake peaks,

no enhancements found

Investigation of D*p and associated K°'s

1.Selection of D* DIS-events (dm < 170MeV, r+w charge) with V $^{\circ}$ candidates

Investigation of D*p and associated Λ^{0} 's

For M(D*p) \approx 3100 MeV: M(π_{slow} p) close to the Λ^0 mass due to kinematics.

Was studied for publication using primary tracks Conclusion: No problem

Check with tracks from secondary vertices

Investigation of D*p and associated Λ^{0} 's

No cut in

 $M(K^{-}\pi^{+}\pi^{+}p)$ applied

Select $D^0 \rightarrow K^-\pi^+$ and c.c.

p-selection as for D*p paper

 Λ^{0} signal in rc/wc D* sample No DTNV in commom

Karin Daum

Investigation of D*p and associated Λ^{0} 's

p-selection as for D*p paper

Selection: $|m(\pi p)-m(\Lambda^0)| < 9$ MeV

E e = 27.6 GeV = E p	= 920 GeV
√s ~ 300-318 GeV (energy	c.m.)
DIS kinematics:	
Photon virtuality	Q ² =-q ²
Electron inelasticity	у
Scaling variable	×
Hadronic mass	W

Kinematic regimes

Scattered e detected: $Q^2 > 1 \text{ GeV}$ Electroproduction (DIS) Scattered e not detected: $Q^2 \sim 0 \text{ GeV}$ Photoproduction

Systematics: variation of Θ_c fragmentation function

Cut in (D*p) fragmentation variable

New selection for D*p yield estimate: $X_{obs}(\Theta_c) > min (0.5 * P (proton), 0.5)$ (use for acceptance corrected yields of Θ_c vs Zd , X_{obs})

Karin Daum

Karin Daum