Measurement of Beauty production at HERA Using Events with Muons and Jets

O. Behnke (Heidelberg) Apr 29, 2005 DIS2005 Conference, Madison

Beauty production at HERA

Key questions/points:

- Are available pQCD calculations in Next-to-leading order good enough?
- Multi-hard scale problem in pQCD: $[\alpha_s \ln(Q^2/m_b^2)]^n$ terms \rightarrow pQCD approximations: Massive and Massless schemes (and variable s.)
- Probe hard scales over wide range:

Kinematic regionHard scales
$$\gamma p$$
: $Q^2 < 1 \text{ GeV}^2$ m_b , p_T^b DIS: $Q^2 > 1 \text{ GeV}^2$ m_b , Q^2 , p_T^b

Production rates at HERA

Total production rates at HERA:

 $\sigma_{\rm uds}: \sigma_{\rm charm}: \sigma_{\rm beauty} \sim 2000: 200: 1$

Main reason for Beauty suppression: phasespace!

• Long b lifetime \rightarrow Large Muon Impactpar. δ

In the following focus on results

from the new H1 paper hep-ex/0502010

This measurement covers both γp and DIS

δ and p_t^{rel} in γp sample (≈ 1750 events)

Likelihood fit to 2-dimensional (δ, p_T^{rel}) distribution: $\rightarrow f_b \sim 30\%$

Beauty in γp : vs muon pseudorapidity

Beauty in γp : vs p_t^{μ}

Comparison of H1 and ZEUS γp results

9

Beauty in DIS: vs. Muon p_T und η

Beauty in DIS: Compare H1 and ZEUS results

11

Recent HERA beauty results vs. Q^2

First HERA beauty results (Situation in 2001)

Why is the excess larger for the first H1 measurements???

For the first H1 measurements

- Data were extrapolated from the Muon+jets level to the Muon level using leading order AROMA MC and then compared to NLO. Reinvestigation → LO and NLO extrapolation consistent, no problem
- Softer p_T^{Jet} and p_T^{μ} cuts applied (e.g. $p_T^{\mu} > 2 \text{ GeV}$ instead of 2.5 GeV) \rightarrow different kinematic phasespace!

NLO calculations: How it is done today

to compare with HERA data: Example: HVQDIS

- Apply purely longitudinal Peterson fragmentation to bquark
- Fragmented b-quark is 'decayed' using muon decay spectrum (e.g. from JETSET)
- Apply hadronisation corrections for parton jets using MC

 \Rightarrow Kniehl et al.: Fragmentation is arbitary \rightarrow what is the uncertainty?

 \Rightarrow Fragm., Muon-decay and Hadronisation corr. for parton jets \rightarrow All sources for considerable syst. uncertainties of calculation!

Beauty at Tevatron Run-II

Conclusions

- Recent results on B-production at HERA with Muons and Jets:
 - Generally good agreement between H1 and ZEUS data
 - Data are systematically above predictions from Massive NLO
 - Trend: Data above NLO at small hard scales p_t^b , Q^2 and in forward direction
 - Need for improved models: Theoreticians: Please provide them, e.g. MC@NLO!

Backup slides

Beauty with muon and jets: Theory models

Leading ord	er + P.S.	MC's
-------------	-----------	------

Massive NLO

	PYTHIA	RAPGAP	CASCADE	FMNR	HVQDIS
Version	6.1	2.8	1.00/09; 1.2		1.4
Proton PDF	CTEQ5L	CTEQ5L	JS2001	CTEQ5M	CTEQ5F4
			J2003		
Photon PDF	GRV-G LO			GRV-G HO	
$\Lambda^{(4)}_{QCD} \ [\text{GeV}]$	0.192	0.192	0.2	0.326	0.309
Renorm. scale μ_r^2	$m_q^2 + p_{tq\bar{q}}^2$	$Q^2 + p_{tq\bar{q}}^2$	$\hat{s} + p_{tq\bar{q}}^2$	$m_b^2 + p_{tb\bar{b}}^2$	$m_b^2 + p_{tb\bar{b}}^2$
Factor. scale μ_f^2	$m_q^2 + p_{tq\bar{q}}^2$	$Q^2 + p_{tq\bar{q}}^2$	$\hat{s} + Q_t^2$	$m_b^2 + p_{tb\bar{b}}^2$	$m_b^2 + p_{tb\bar{b}}^2$
$m_b \; [{ m GeV}]$	4.75	4.75	4.75	4.75	4.75
$m_c \; [\text{GeV}]$	1.5	1.5	1.5		
Peterson ϵ_b	0.0069	0.0069	0.0069	0.0033	0.0033
Peterson ϵ_c	0.058	0.058	0.058		