Diffractive D* Production in DIS at H1

Matthew Beckingham (DESY) on behalf of the H1 Collaboration

XIII International Workshop on Deep Inelastic Scattering Madison, WI, USA 27th April - 1st May 2005

D* Production in Diffractive DIS

- Process: $ep \rightarrow e D^{*\pm}X'Y$
- Two distinct hadronic systems
- X contains at least one D^* meson
- *Y*: elas scattered *p* or low mass state
- x_{IP} : longitudinal momentum fraction of diffractive exchange relative to proton
- β: longitudinal momentum fraction of quark entering hard subprocess relative to diffractive exchange
- *z_{IP}*: longitudinal momentum fraction of gluon relative to diffractive exchange

QCD Factorisation in Diffractive DIS

Factorise diffractive DIS into diffractive PDFs and hard scattering matrix elements

$$\sigma(\gamma^* \to XP) \sim p_{q/p}(x_{IP}, t, x, Q^2) \otimes \sigma_{\gamma^* q}(x, Q^2)$$

• universal diffractive parton densities

28/04/05

• hard scattering matrix element same as incl. heavy flavour prod.

 \Rightarrow directly sensitive to gluon content of diffractive exchange

Diffractive Parton Densities

28/04/05

- Gluon contribution dominates (~75% of momentum of diffractive exchange)
- Singlet distribution well constrained
- Increased uncertainties for gluon distribution at higher z
- Boson-gluon fusion processes provide test of gluon diffractive PDFs (e.g. diffractive dijet and charm)

Event Selection

28/04/05

Total Diffractive D^{*±} Cross Section

• H1 99-00 Prelim:

$$\begin{split} 2 < Q^2 < 100 \; \text{GeV}^2, \, 0.05 < y < 0.7, \, x_{_{IP}} < 0.04, \, M_{_Y} < 1.6 \; \text{GeV}, \\ t < 1 \; \text{GeV}^2, \, p_{_{T,D}*} > 2 \; \text{GeV}, \, |\eta_{_D*}| < 1.5 \end{split}$$

 $\sigma_{\rm vis}(ep \rightarrow eD^{*\pm}X'Y) = 333 \pm 38(stat.) \pm 57(sys.)\,\rm pb$

• H1 96-97:

 $\sigma_{\rm vis}(ep \rightarrow eD^{*\pm}X'Y) = 246 \pm 54(stat.) \pm 56(sys.)\,\rm pb$

- ZEUS (rescaled to H1 kinematic phase space): $\sigma_{vis}(ep \rightarrow e D^{*\pm} X'Y) = 305 \pm 25(stat.)^{+20}_{-34}(sys.) pb$
- Good agreement between measured total cross sections

Comparison to NLO Calculation($x_{IP} < 0.04$)

H1 99-00 Prelim: $\sigma(ep \rightarrow e D^{*\pm} X'Y) = 333 \pm 38(stat.) \pm 57(sys.)$ pb

- NLO with NLO diffractive parton densities (HVQDIS): Harris, Smith Nucl. Phys B452 (1994) 74 L. Alvero, J.C. Collins, J.J. Whitmore, hep-ph/9806340
 - NLO diff. parton densities from H1 2002 Prelim. NLO QCD fit

 - QCD Parameters: $m_c = 1.5 \text{ GeV}$, $\Lambda_{QCD} = 0.2 \text{ GeV}$, $N_f = 4$ Renormalisation and fragmentation scales: $\mu_f^2 = \mu_r^2 = Q^2 + 2 m_c^2$
 - Peterson fragmentation function: $\epsilon = 0.078$
 - Uncertainties:
 - Vary μ_r^2 and μ_f^2 by $\frac{1}{4}$ and 4 (keeping $\mu_f^2 = \mu_r^2$)
 - Vary $m_c = 1.35 1.65$ GeV and $\epsilon = 0.035 0.1$

H1 2002 Prelim NLO: $\sigma_{vis}(ep \rightarrow e D^{*\pm} X'Y) = 241^{+66}_{-30} \text{ pb}$

- Prediction lower than data, but consistent within uncertainties
- Data and NLO agreement supports hard scattering factorisation

Comparison to LO Calculation ($x_{IP} < 0.04$)

H1 99-00 Prelim: $\sigma(ep \rightarrow e D^{*\pm} X'Y) = 333 \pm 38(stat.) \pm 57(sys.)$ pb

- $O(\alpha_s)$ MEs + LO diff. parton densities (RAPGAP):
- QCD Parameters: $m_c = 1.5 \text{ GeV}, \Lambda_{QCD} = 0.2 \text{ GeV}, N_f = 4$
- D^* fragmentation by Lund string model
- Renormalisation and fragmentation scales: $\mu_f^2 = \mu_r^2 = Q^2 + p_T^2 + 2m_c^2$

H1 2002 Prelim ME+PS: $\sigma_{vis}(ep \rightarrow eD^{*\pm}X'Y) = 224 \text{ pb}$

- Predictions lower than data

Differential Cross Sections ($x_{IP} < 0.04$)

- Compare data to NLO calculation in collinear approach
- Inner error bar: renormalisation scale uncertainty
- NLO calculations below data, but reproduce data within uncertainties

Differential Cross Sections ($x_{IP} < 0.04$)

 Differential cross sections in diffractive variables also reproduced by NLO calculation within uncertainties

28/04/05

log₁₀β

10

-1

-2

-1.5

x_{IP} and $p_T(D^*)$ Cross Sections

- Compare x_{IP} cross section to
 - NLO calculation
 - LO calculation (RAPGAP)
- RAPGAP prediction in agreement with full NLO calculations
- Compare p_T cross section to ZEUS data rescaled to H1 kinematic range using RAPGAP
- Good agreement between H1 and published ZEUS data

28/04/05

• Data reproduced by NLO calculation within uncertainties

H1 Diffractive D

M. Beckingham DIS2005 Diffractive D^{*} Production in DIS at H1

BJKLW Two Gluon Model

H. Bartels et al Eur. Phys. J. C24 (2002) 555

- Describe diffractive exchange as colour singlet exchange of at least two gluons
- Couple directly to $c \overline{c}$ pair or to $c \overline{c} g$
- Unintegrated gluon distributions from inclusive structure function F_2
- Only valid for small x_{IP} (quark exchange neglected)
- $p_T > 1.5$ GeV cut for gluon in $c \overline{c} g$ \Rightarrow use perturbation theory

2<u>8/04/</u>05

Comparisons to Calculations ($x_{IP} < 0.01$)

H1 99-00 Prelim: $\sigma(ep \rightarrow e D^{*\pm} X'Y) = 131 \pm 24(stat.) \pm 24(sys.)$ pb

- NLO with NLO diff. parton densities (HVQDIS): H1 2002 Prelim NLO: $\sigma_{vis}(ep \rightarrow e D^{*\pm} X'Y) = 76^{+17}_{-10} \text{ pb}$
- $O(\alpha_s)$ MEs + LO diff. parton densities (RAPGAP): H1 2002 Prelim ME+PS: $\sigma_{vis}(ep \rightarrow e D^{*\pm} X'Y) = 76$ pb
 - Predictions lower than data

28/04/05

- pert. 2-gluon, unintegrated gluon density (CCFM): CCFM set 1 BJKLW ($p_T > 1.5 \text{ GeV}$): $\sigma_{vis}(ep \rightarrow e D^{*\pm} X'Y) = 139 \text{ pb}$

- Visible cross section well reproduced by 2-gluon model

13

Differential Cross Sections ($x_{IP} < 0.01$)

- Compare $x_{IP} < 0.01$ cross sections to
 - NLO calculation
 - perturbative 2-gluon
- Only extra free parameter $p_T > 1.5 \text{ GeV}$ for gluon in $c \overline{c} g$ (also used for inclusive jets)
- Data described by both NLO and two gluon models

14

Conclusions

- New measurement of diffractive open charm in DIS at HERA
- Total visible cross section:

 $\sigma_{\rm vis}(ep \rightarrow eD^{*\pm}X'Y) = 333 \pm 38(stat.) \pm 57(sys.) \,\mathrm{pb}$

- agreement with previous H1 and ZEUS measurements
- LO and NLO models:
 - lie below data, but describe data within uncertainties
 - describes shape of data well
- Agreement supports validity of QCD factorisation in DIS
- Two gluon model describes inclusive and differential cross sections in range of validity ($x_{IP} < 0.01, p_T < 1.5 \text{ GeV}$)