Diffractive Dijet and D* Production at HERA

XVIIth Recontre de Blois

XIth International Conference on Elastic and Diffractive Scattering towards High Energy Frontiers Château de Blois, France 21/22 June 2004 Yuji Yamazaki (KEK, ZEUS) On behalf of the H1 and ZEUS collaborations

Y. Yamazaki (KEK) Diffractive Dijet and D* production at HERA

Introduction: why jet and HQ production ?

- Diffractive parton densities:
 - Extracted from F₂^{D(3)} (DDIS) sensitive to quarks
- Gluons from scaling violation
 Poorer constraint

of the exchange in the proton

Why jet and HQ production – (1) sensitive to gluons

- Jet and HQ productions in pQCD: cross section using factorisation
 - Example: $d\sigma/dE_T$ at given x_P

$$\frac{d\sigma_{\gamma^* p}}{dE_T}\bigg|_{x_{\mathbf{P}}} = \sum_i \int_x^{x_{\mathbf{P}}} \left[dz \frac{d\hat{\sigma}^{i\gamma^*}(z,\mu^2,x_{\mathbf{P}})}{dE_T} f_i^D(z,\mu^2,x_{\mathbf{P}},t) \right]$$

- Assuming the factorisation holds, the jet and HQ cross sections give better constraint to the gluon density
- Dijet events can reconstruct z_P
 - longitudinal momentum of the parton to the hard scattering

Hard scale is given by E_{Tjet} or HQ mass

Jets in DIS

- Agree with NLO using H1 2002 fit
- Factorisation works if the PDFs are correct, or
- Data constrain PDFs if factorisation holds

- Cone algorithm R = 1.0, γ*p frame
 E_{T1} > 5 GeV, E_{T2} > 4 GeV
 4 < Q² < 80 GeV², 0.1 < y < 0.7
 - $x_{\mathbf{P}} < 0.05$

D* cross sections (open charm)

- H1 ZEUS
- $2[1.5] < Q^2 < 100[200] \text{ GeV}^2$
- $|\eta_{D^*}| < 1.5$,
- $p_{\text{TD*}} > 2.0[1.5] \text{ GeV} (\gamma * p \text{ frame})$
- $x_{\mathbf{P}} < 0.04[0.035]$ etc.

Why jet and HQ production – (2) factorisation test

- Dijet cross section at TeVatron: factor 5-10 lower than the QCD calculation using the HERA diffractive PDFs
- Multi-parton scattering (re-scattering) ?

Jets in photoproduction: controlling the size of the "hadron" = photon

 Jets in photoproduction (PHP): thought to be an ideal testing ground for rescattering
 large (resolved) : hadron-like small (direct) : point-like

Y. Yamazaki (KEK) Diffractive Dijet and D* production at HERA

New measurement in DIS: as close to the kinematical range of PHP

- Common phase space: DIS measurement was restricted to
 - 0.3 < y < 0.65
 - PHP: $Q^2 < 0.01 \text{ GeV}$ -1 < $\eta_{\text{jet}}^{\text{lab}} < 2$
 - $\label{eq:def-3} \begin{array}{ll} & DIS: \, 4 < Q2 < 80 \ GeV \\ & -3 < \eta_{jet}^{} * < 0 \end{array}$
- Good agreement with NLO
- Comparison with PHP through NLO calculation

The ratio data/NLO using the same PDF

- Cross sections are compared through the ratio to the NLO using the same PDFs
- PHP cross section is lower (w.r.t. the NLO calculation)
- Resolved suppressed ?
 → look more in detail...

PHP dijet: shape comparison with LO+PS

- Shape of the cross section is well described by RAPGAP 3.00
 - MC normalised to the data
- Data/MC flat in x_{γ} : **no indication of resolved suppression**
- Some excess at highest z_P : sensitivity to the diffractive PDFs

Comparison with NLO

- NLO suppose to give stable prediction in normalisation
 - absolute cross section comparison
 - scale uncertainty in band
- Result: flat in x_{γ}
 - Consistent with LO+PS
- However, the data is
 lower than NLO by ~0.6
 - Both direct & resolved are suppressed
 - PDF uncertainty ? unlikely – DIS described by NLO with H1 fit 2002

PHP comparison with NLO - other variables

- Global suppression (both dir+res) with factor ~0.5 works also for other kinematical variables
- R = 0.34 resolved-only suppression fails clearly

Both dir+res suppressed by ~0.5 Both in H1 and ZEUS !

Detailed comparison in PHP: $x_{\gamma} > 0.75$ and $x_{\gamma} < 0.75$ with NLO

- Data / NLO is flat, suppressed by ~0.6
 - Exception in high-E_T for $x_{\gamma} > 0.75$: resolved enhanced ?
 Could also be photon PDFs

Conclusion

- Dijets in DIS and D* cross sections:
 - Agree with the NLO prediction with the H1 2002 diffractive PDFs
 - Factorisation holds (assuming the PDF is correct)
- PHP dijet cross sections are measured
 - to investigate the puzzle of Tevatron/HERA ~ 1/5 1/10
 Expectation: resolved PHP is suppressed while direct is not
 - Data agree with LO and NLO in shape, also in x_{γ}
 - □ But data ~half of the NLO (with the H1 2002 PDFs)
 → both resolved and direct suppressed in conflict with theoretical expectation
- Need more ideas to understand this !
 - Jet calculation from saturation, SCI etc....