XVIIth Rencontre de Blois XIth International Conference on Elastic and Diffractive Scattering: Towards High Energy Frontiers

Vector Meson Production at HERA

ALESSIA BRUNI, INFN BOLOGNA

Alessia Bruni, INFN Bologna

Aim is understand dynamics of high energy scattering in QCD

test pQCD in transition regime soft-hard

• measure non-perturbative quantities (generalised) pdfs Alessia Bruni, INFN Bologna Blois, May 15-20, 2005

Vector meson production in $\gamma^* p$

HERA regime: collisions of 27.5 GeV e with 920 GeV p $0 < Q^2 < 100 \text{ GeV}^2$ and 30 < W < 220 GeV

- Q^2 virtuality of exchanged γ^* $Q^2 = -q^2 = -(k-k')^2$
- $W \gamma^* p$ centre of mass energy $W = (q + p)^2$
- 4-momentum transfer squared at the p vertex $t = (P P')^2$
- x Bjorken variable $x = \frac{Q^2}{P \cdot q} = \frac{Q^2}{Q^2 + W^2}$

QCD factorization - two approaches QCD - Breit frame

NLO calculation available for J/ψ (γp , DIS) and ρ (DIS) $\sigma_L \simeq \frac{\alpha_S^2}{Q^6} |xG(x,Q^2)|^2 \Rightarrow$ $\sigma_L \propto \frac{\alpha_S^2}{Q^6} |H(x_1,x_2,t,Q^2)|^2$ Generalised PDFs build from PDFs with skewing effect and *t*-dependence Colour dipole - target frame

γ* fluctuates in qq̄ + qq̄g + ..
Lifetime of dipole very long because of large γ boost

•Transverse size $\propto 1/(Q^2 + M_{q\bar{q}}^2)$

 $\sigma_{\gamma^*p}(x,Q^2) = \int dr^2 dz \psi^{in}(r,z,Q^2) \sigma_{dipole}^2(x, \bullet \sigma_{dipole} \text{ from model (2-gluons, ..)})$

Alessia Bruni, INFN Bologna

Clean experimental signature

- scattered *e* reconstructed in CAL or beam pipe calorimeter (DIS) or undetected (γ*p*)
- scattered p undetected
- i.e. $\rho \rightarrow \pi^+ \pi^-$, $J/\psi \rightarrow l^+ l^-$ (BR 6%)

2 tracks reconstructed in central chamber associated to pions, electrons or muons in CAL electrons can be reconstructed in CAL, outside tracking acceptance

• nothing else in the detector

Clean experimental signature - J/ψ

data from 1999/2000 (HERA I): 55 pb⁻¹ central, 30 pb⁻¹ backward

Alessia Bruni, INFN Bologna

ZEUS, EPJ C24 (2002) 3, Nucl. Phys. B695 (2004) 3 - H1 prel. DIS05

Alessia Bruni, INFN Bologna

Alessia Bruni, INFN Bologna

σ vs W in bins of Q^2

• General transition to hard behaviour at high values of $Q^2 + M^2$

 ρ

ZEUS, EPJ C24 (2002) 3, Nucl. Phys. B695 (2004) 3 - H1 prel. DIS05

- $d\sigma/dt \propto e^{bt}$, for $|t| < 1~{\rm GeV^2}$
- $d\sigma/dt \propto e^{bt}$
- b related to transverse size of the interaction cc̄-p
- no dependence of b from Q^2 , interaction dominated by size of p

ZEUS, EPJ C24 (2002) 3, Nucl. Phys. B695 (2004) 3 - H1 prel. DIS05

• General transition to small configuration at high values of $Q^2 + M^2$

Alessia Bruni, INFN Bologna

Exclusive VM production - effective Pomeron trajectory

$$d\sigma/dt \propto \exp^{b_0 t} W^{4(\alpha_{I\!\!P}(t)-2)}$$

Photoproduction:

 $\alpha_{I\!P}(t) = (1.224 \pm 0.010 \pm 0.012) + (0.164 \pm 0.028 \pm 0.030) GeV^{-2}t$ DIS:

 $\alpha_{I\!P}(t) = (1.18 \pm 0.05 \pm 0.03) + (0.02 \pm 0.14 \pm 0.07) GeV^{-2}t$

Alessia Bruni, INFN Bologna

Exclusive VM production - effective Pomeron trajectory

 $d\sigma/dt \propto \exp^{b_0 t} W^{4(\alpha_{I\!\!P}(t)-1)}$ with $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P} t$

Alessia Bruni, INFN Bologna

ZEUS, EPJ C24 (2002) 3, Nucl. Phys. B695 (2004) 3 - H1 prel. DIS05

Exclusive J/ψ production comparison with QCD models

Martin, Ryskin Teubner Frankfurt, Koepf, Strikman Gotsman, Levin, Lublisky, Maor, Naftali

models differ for

- assumptions on $c\overline{c}$ wave function
- corrections applied to LO calculations
- assumptions on GPDFs
- large uncertainty in normalisation
- models describe qualitatively data
- rise of σ with W related to increase in gluon density at low x

Exclusive ρ - comparison with models

• First NLO: Ivanov, Krasnikov and Szymanowski

solid line $\mu_R = \mu_F$, dashed line $\mu_R = Q$

Exclusive J/ψ production - comparison to different PDFs

- strong sensitivity to generalised gluon distribution
- could the data be used to constrain gluon density?

Alessia Bruni, INFN Bologna

VM at large *t*: BFKL dynamics

- BFKL evolution driven by terms $\alpha_S^n \ln^n (W^2/|t|)$
- At high t, proton mostly dissociates
- BFKL-based models reproduce the trend of data (but NLO missing)

 \bullet DGLAP fails to descrive evolution at large t

Alessia Bruni, INFN Bologna

Decay angular distributions

Angular distributions are related to the spin of γ^* and meson Angular distr. \rightarrow spin density matrix elements $r_{ij}^{kl} \rightarrow$ helicity amplitudes $T_{\lambda_V M \lambda_\gamma}$

DECAY ANGULAR DISTRIBUTIONS

Spin Matrix Elements

s-channel helicity conservation (SCHC):

• the VM retains the γ^* helicity. $R = \sigma_L / \sigma_T$ is related to the spin density matrix elements r_{00}^{04} (good approximation).

pQCD:

- during the interaction, the orbital angular momentum of the qq̄ can be modified through the transfer of transverse momentum carried by gluons;
- the helicity of the outgoing vector meson can be different from that of the incoming photon, helicity flip between photon and meson is possible.

VM at large *t*: BFKL dynamics

- *t* dependence well described by BFKL models
- but BFKL models unable to describe r_{10}^{04}
- progress expected

Summary

- Experimentally much progress has been achieved,
 - high precision in wide kinematic region
 - increased statistics at high Q^2 will help (700 pb⁻¹ expected at HERA II)
- Theoretically chance to investigate the QCD dynamics in the semi-hard regime,
 - the overall picture looks correct
 - large uncertainties
 - full NLO calculations are missing