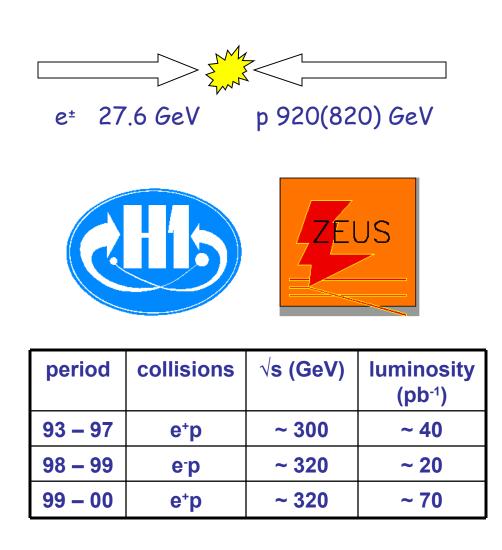
12th International Conference on Supersymmetry and Unification of Fundamental Interactions June 17-23, 2004 Tsukuba, Japan

Searches for SUSY and Exotics at HERA

Johannes Haller Physikalisches Institut Heidelberg now at CERN

(on behalf of H1 and ZEUS)

Content of the Talk

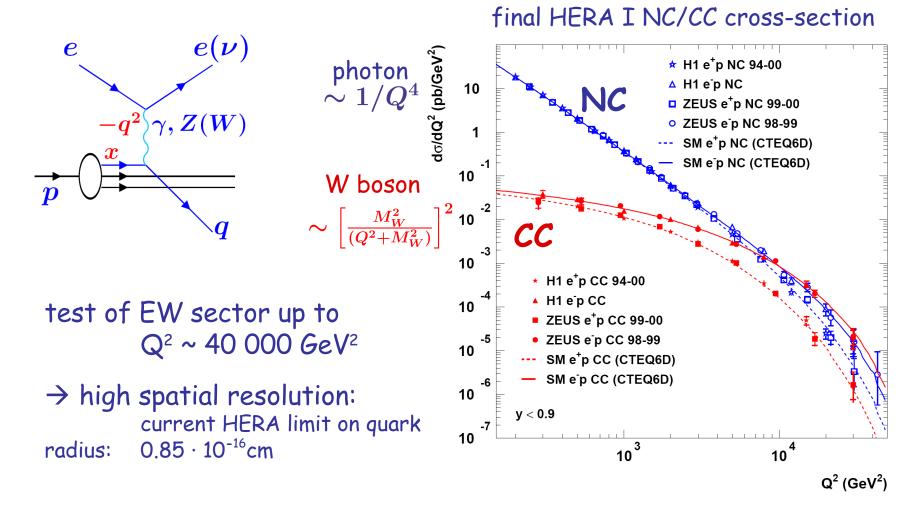

- > HERA I, luminosities and data sets
- DIS at high Q² and LED
- Leptoquarks
- > R_P-violating SUSY:
 - Resonant Squark Production
 - Bosonic Decays of Stops
 - Sleptons and GMSB
- Single Top Production
- Outstanding Events:
 - Isolated Leptons
 - Multi-Electrons
- First Results from HERA II

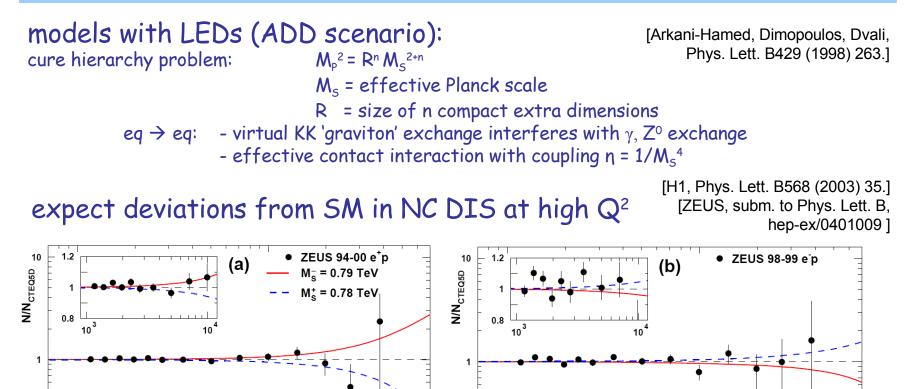
Not covered:

- Excited leptons and quarks
- General search for new physics
- Contact Interactions
- Finite quark radius
- R_p-conserving SUSY
- Doubly charged Higgs
- LFV Leptoquarks
- Magnetic monopols
- Polarized cross-sections

. . .

HERA I, Luminosities and Data Sets




- excellent performance during HERA I
- many new results on searches based on HERA I data !
- HERA II data taking on-going (see later)

SM: DIS at high Q²

HERA is a unique facility to test eq interactions at highest energies !

Large Extra Dimensions

limit on eff. Planck scale: M_s > 0.8 TeV

10⁴

no significant deviation from SM at high Q^2

Large Extra Dimensions Limits

similar methods allow to set constraints on: eeqq Contact Interactions, finite quark radius, heavy Leptoquarks

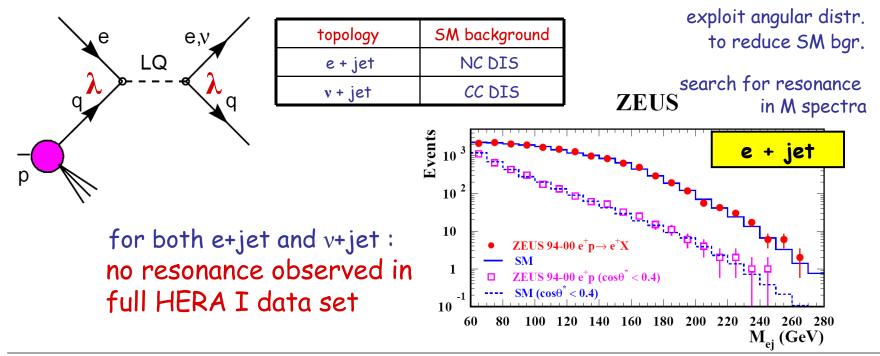
10⁴

stat. error dominant!

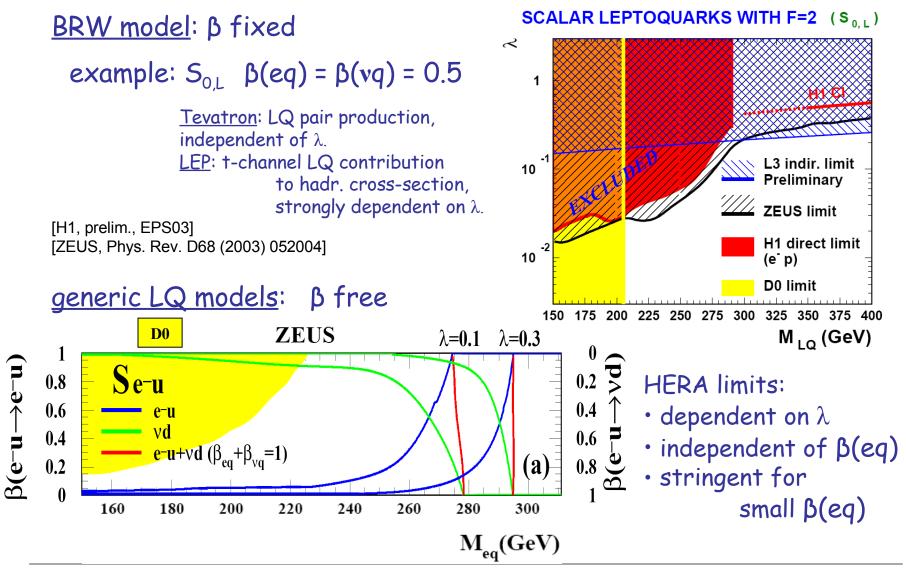
Large Extra Dimensions Limits

10³

 Q^2 (GeV²)


10³

 Q^2 (GeV²)


Leptoquarks

- symmetry between the lepton & quark sector in the SM
- LQs appear in many extensions of SM: GUT-like theories, Superstring-'inspired' E₆-models, Technicolor-like theories, Compositeness models, ...
- general effective theory: BRW model: $\beta(eq) = 0, \frac{1}{2}$ or 1. Phys. Lett. B191 (1987) 442.]

single LQ production at HERA depends on λ (lepton-quark-LQ coupling)

Leptoquarks: Exclusion Limits

Resonant Production of Squarks

general superpotential has R_P-violating terms :

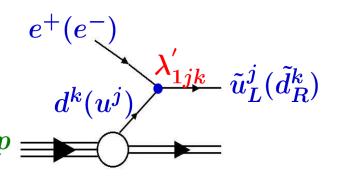
$$R_p = (-1)^{3B+L+2S}$$

 $W_{R_{p}} = \lambda_{ijk} L_i L_j \bar{E}_k + \frac{\lambda_{ijk}' L_i Q_j \bar{D}_k}{L_i Q_j \bar{D}_k} + \lambda_{ijk}'' \bar{U}_i \bar{D}_j \bar{D}_k$

For proton stability: $\lambda' \cdot \lambda'' = 0$ sufficient

<u>main consequences for colliders</u>:

1. fundamental instability of SUSY matter (LSP decay)

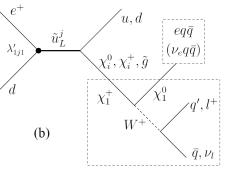

 \rightarrow indirect sensitivity to λ , λ' , λ'' from sparticle pair

production

 \rightarrow resonant production of sparticles at colliders.

<u>HERA:</u> single squark production via λ'_{1jk} e⁺p, e⁻p: all flavors can be probed e.g. stop production via λ'_{131} in e⁺p collisions

best discovery reach for SUSY at HERA


Squarks: Decay Modes

 $\lambda' \neq 0$ opens a large variety of squark decay modes.

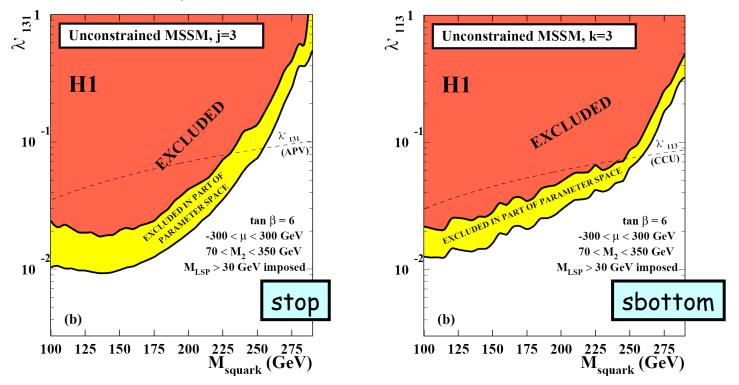
LSP decay: $\chi^0_1
ightarrow e^\pm q ar q \; (
u q ar q)$

example of gauge decays:

many final states considered to reduce dependence on SUSY parameters (e.g. μ , tan β , M_2 , λ' , M_{squark} , ...) $\rightarrow BR_{tot} \sim 1$

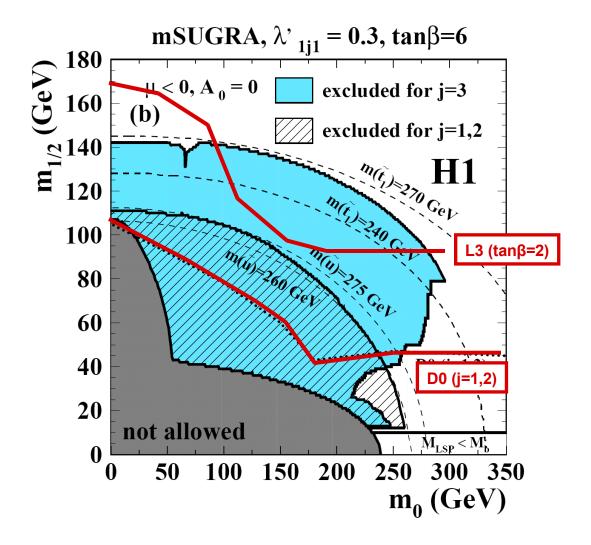
	e	^+p collisions	e	^-p collisions	ents	10 ²	e^+MJ channel $\bullet e^+n$ data
Channel	Data	SM expectation	Data	SM expectation	- L		e e p unu
eq	632	628 ± 46	204	192 ± 14	6		$- MC DIS + \gamma p$
u q		—	261	269 ± 21			in the second se
eMJ ("right" charge)	72	67.5 ± 9.5	20	17.9 ± 2.4		10	
eMJ ("wrong" charge)	0	0.20 ± 0.14	0	0.06 ± 0.02			
eeMJ	0	0.91 ± 0.51	0	0.13 ± 0.03			E 🐴 H1
$e\mu MJ$	0	0.91 ± 0.38	0	0.20 ± 0.04			
u e M J	0	0.74 ± 0.26	0	0.21 ± 0.07		1	(a)
u MJ	30	24.3 ± 3.6	12	10.1 ± 1.4]		
$ u \mu M J $	0	0.61 ± 0.12	0	0.16 ± 0.03			50 100 150 200 250 300

[H1, subm. to Eur. Phys. J. C, hep-ex/0403027]


all channels in agreement with SM expectation

Johannes Haller

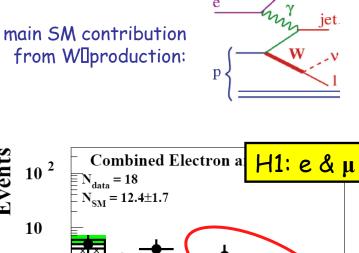
M_{inv} (GeV)

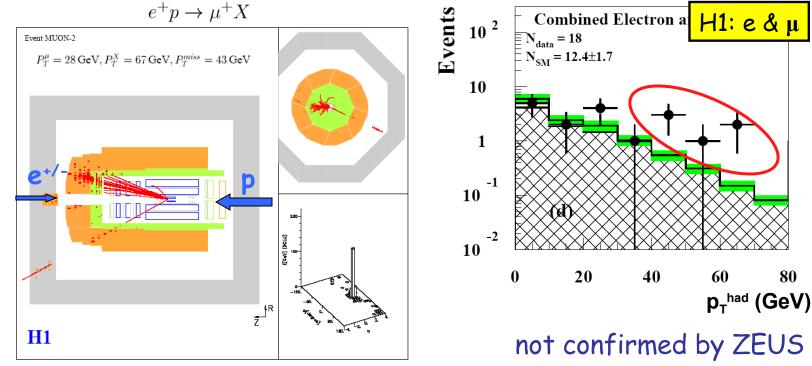

Squarks: Exclusion Limits

• For λ '=0.3 (e.m. strength) squarks up to 280 GeV are ruled out • small couplings: improvement of indirect low-energy limits

Squarks: mSUGRA Interpretation

HERA limits follow squark isomass curve

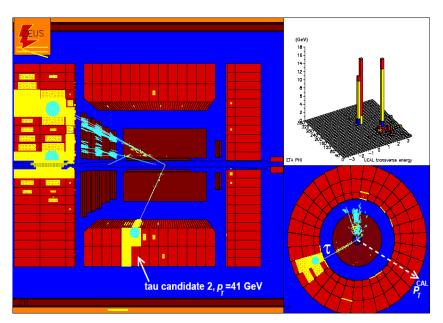

for $\lambda' = 0.3$: squark masses up to 275 GeV ruled out


HERA sensitivity comparable with LEP and Tevatron bounds

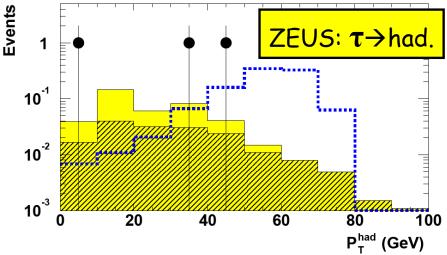
Events with Isolated Leptons

H1 observes excess of spectacular events

- isolated e or µ • with high p_{T}
- **P**_{T,miss}
- jet with high p_T



80


Events with Isolated Leptons

 τ search performed by ZEUS:

- selects isolated taus decaying to hadrons
- pencil-like jets

3 events found, 0.40 ± 0.13 exp.

not confirmed by a preliminary H1 analysis

Events with Isolated Leptons

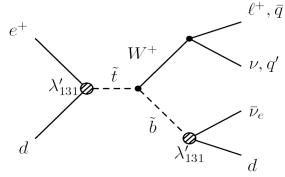
current situation: observed /expected

H1	electron	muon	tau (prelim)
p _T ^x > 25 GeV	5 / 1.8 ± 0.3	6 / 1.7 ± 0.3	0 / 0.53 ± 0.10
p _T ^x > 40 GeV	3 / 0.7 ± 0.1	3 / 0.6 ± 0.1	0 / 0.22 ± 0.05

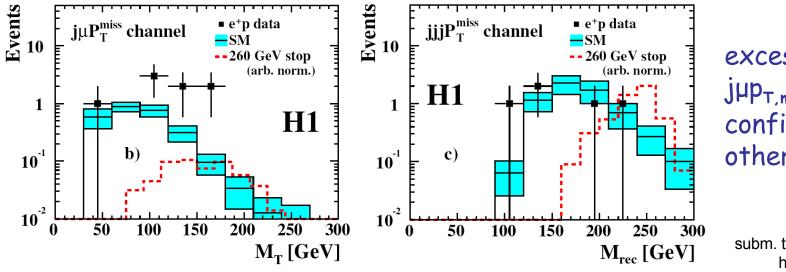
ZEUS	electron	muon	tau
p _T ^x > 25 GeV	2 / 2.9 ± 0.6	5 / 2.8 ± 0.2	2 / 0.20 ± 0.05
p _T ^x > 40 GeV	0 / 0.9 ± 0.1	<mark>0</mark> / 0.9 ± 0.1	1 / 0.07 ± 0.02

interpretation unclear need more data from HERA II

e/m : [H1, Phys. Lett. B561 (2003) 241.] [ZEUS, Phys. Lett. B559 (2003) 153.] tau: [H1, prelim., DIS04] [ZEUS, Phys. Lett. B583 (2004) 1.]

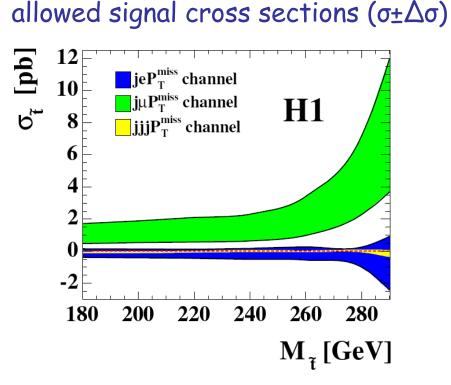

Bosonic stop Decay

possible SUSY explanation of isolated leptons:


[T. Kon et al, Mod. Phys. Lett. A12 (1997) 3143.] **1. sbottom is significantly lighter than stop**

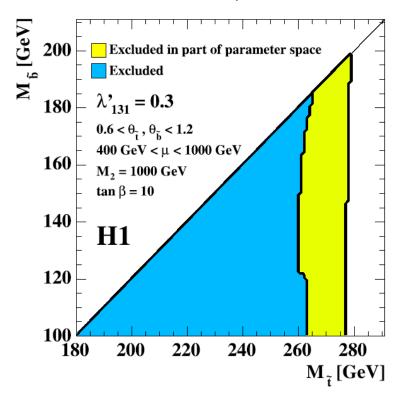
2. decay to gauginos kinematically forbidden

H1	jep _{T,miss}	jμp _{T,miss}	jjjp _{T,miss}	e j
data	3	8	5	1100
SM exp.	3.8 ± 0.9	2.7 ± 0.5	6.2 ±1.7	1120 ± 131


<u>signature</u>: 3 jets + p_{T,miss} jet +l +p_{T,miss}

excess in jµp_{T,miss} not confirmed by other channels

[H1, subm. to Phys. Lett. B, hep-ex/0405070]

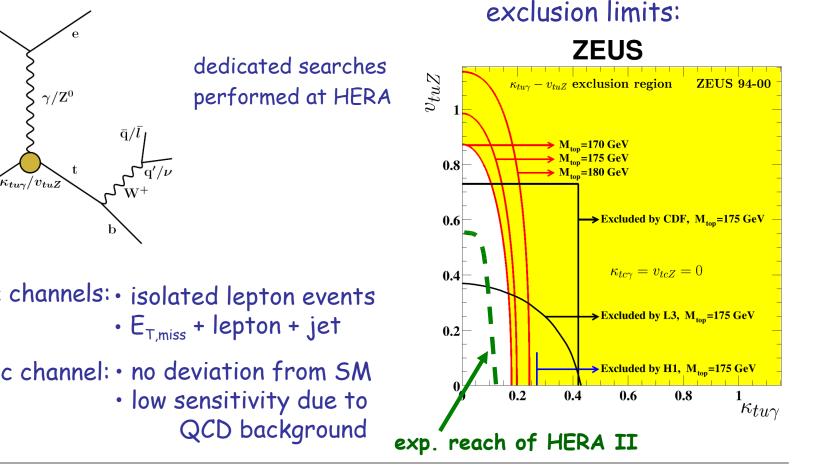

Bosonic stop Decay: Interpretation

all channels (except $j\mu p_{\text{T,miss}}$) consistent with non-observation

 \rightarrow Isolated lepton events can hardly be interpreted as scalar tops.

excluded ($M_{stop}, M_{sbottom}$) area

stops up to 275 GeV excluded for λ'_{131} =0.3


$R_{\mbox{\tiny P}}\mbox{-viol}$. SUSY with Sleptons and Gravitinos

 $ilde{\chi}^0_1$ e^{+}/e^{-} if $M_{squark} \gg M_{slepton}$: λ' can still \tilde{e} be probed via slepton exchange: – u^j/d^k d/u $\lambda'_{1i1}/\lambda'_{11k}$ <u>R_p-violation + GMSB:</u> $ilde{\chi}^0_1(\mathrm{NLSP})$ H1 preliminary: e⁺p $\mathsf{m}(\widetilde{\mathsf{e}}) extsf{-m}(\widetilde{\chi}_1^0)$ (GeV) e^+ theoretically GMSB, j=1,2 \tilde{e} inaccessible 80 $\tan\beta = 2, \ \mu < 0, \ N = 1$ Ĝ d λ'_{121} 60 λ' _{1j1}=1.5 <u>signature:</u> 50 isolated $\gamma + p_{T,miss} + jet$ HERA II: 40 **1** fb⁻¹, λ'_{11} = 0.5 30 λ' _{1i1}=1.0 no deviation from SM [H1, prelim., DIS04] 20 obs.: 1 exp.: 3.1 ± 0.3 10 λ' _{1i1}=0.5 70 80 90 100 110 120 130 $m(\tilde{\chi}_1^0)$ (GeV) analogous: $e^+d o u\chi^+; \chi^+ o ilde GW^+$ recall: isolated leptons

Production of single top Quarks

another possible explanation of isolated leptons FCNC couplings to top quark (κ_{tuy} , v_{tuZ})

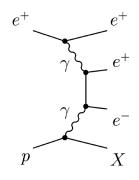
[H1, Eur. Phys. J. C33 (2004) 9.] [ZEUS, Phys. Lett. B559 (2003) 153. and add. DESY-03-1881

leptonic channels: • isolated lepton events

hadronic channel: • no deviation from SM

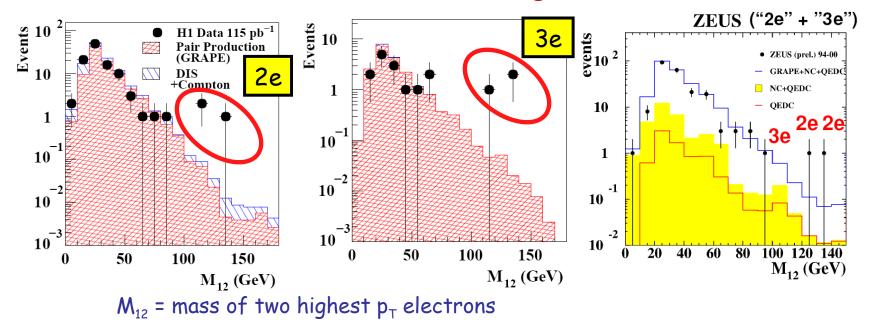
Observation of Multi-Electron Events

search for events with several leptons in final state


good agreement with SM found in muon and tau channels

e: [H1, Eur. Phys. J. C31 (2003) 17.] [ZEUS, prelim., ICHEP02] mu: [H1, Phys. Lett. B583 (2004) 28.] [ZEUS, prelim., ICHEP02] tau: [H1, prelim., DIS04]

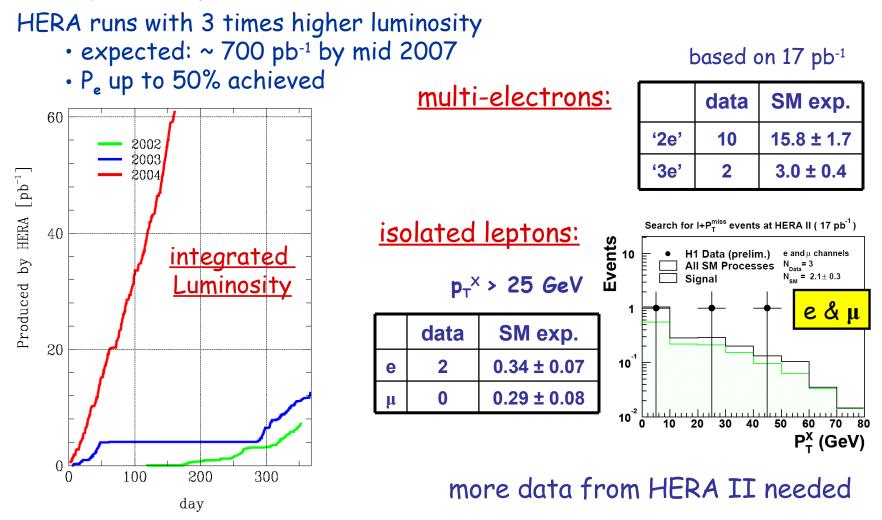
excess observed in electron channel at high invariant mass



main SM contribution from γ - γ collisions:

Observation of Multi-Electron Events

excess in multi-electron channel at high invariant mass


event numbers in electron channel: observed/expected

selection	H1 (115 pb ⁻¹)	ZEUS (130 pb ⁻¹) [prelim.]	
2e, M > 100 GeV	<mark>3</mark> / 0.30 ± 0.04	2 / 0.77 ± 0.08	need m
3e, M > 100 GeV	<mark>3</mark> / 0.23 ± 0.04	<mark>0</mark> / 0.37 ± 0.04	

need more data

First Results from HERA II

background problems are solved!

[H1, prelim., DIS04]

Conclusion

- HERA is a unique facility to search for new physics.
- A large variety of searches for SUSY and exotics has been performed with HERA I data (CI, LED, single top, finite quark radius, excited leptons, excited quarks, leptoquarks, resonant squark production, bosonic stop decay, magnetic monopoles, LFV, ...).
- Outstanding events have been observed (isolated leptons, multielectrons). More data are needed for clarification.
- Background problems after the HERA II upgrade are solved.
- The high luminosity runs of HERA II have started.
- ~ 700 pb⁻¹ are expected by mid 2007.
- First results from HERA II are available now, more to come !